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Abstract. A new conceptual and theoretical framework 
for studying the human postural control system is intro- 
duced. Mathematical techniques from statistical mech- 
anics are developed and applied to the analysis and 
interpretation of stabilograms. This work was based on 
the assumption that the act of maintaining an erect 
posture could be viewed, in part, as a stochastic process. 
Twenty-five healthy young subjects were studied under 
quiet-standing conditions. Center-of-pressure (COP) tra- 
jectories were analyzed as one-dimensional and two- 
dimensional random walks. This novel approach led to the 
extraction of repeatable, physiologically meaningful para- 
meters from stabilograms. It is shown that although 
individual stabilograms for a single subject were highly 
variable and random in appearance, a consistent, subject- 
specific pattern emerged with the generation of averaged 
stabilogram-diffusion plots (mean square COP displace- 
ment vs time interval). In addition, significant inter-subject 
differences were found in the calculated results. This 
suggests that the steady-state behavior of the control 
mechanisms involved in maintaining erect posture can be 
quite variable even amongst a population of age-matched, 
anthropometrically similar, healthy individuals. These 
posturographic analyses also demonstrated that COP 
trajectories could be modelled as fractional Brownian 
motion and that at least two control systems - a short- 
term mechanism and a long-term mechanism - were 
operating dUring quiet standing. More specifically, the 
present results suggest that over short-term intervals 
open-loop control schemes are utilized by the postural 
control system, whereas over long-term intervals closed- 
loop control mechanisms are called into play. This work 
strongly supports the position that much can be learned 
about the functional organization of the postural control 
system by studying the steady-state behavior of the human 
body during periods of undisturbed stance. 
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Introduction 

The task of maintaining an upright posture involves a 
complex sensorimotor control system. Even when a 
young, healthy individual attempts to stand still, the 
center of gravity of his or her body and the center of 
pressure (COP) under his or her feet move relative to a 
global coordinate system. A plot of the time-varying 
coordinates of the COP is known as a stabilogram (Fig. 1). 
A number of biomechanical researchers have attempted to 
evaluate postural sway by using a force platform to 
measure the anteroposterior and mediolateral displace- 
ments of the COP over the plane of support. However, 
previous attempts at interpreting stabilograms from a 
motor control perspective have not been successful. Many 
of the earlier studies limited the analysis of these plots to 
summary statistics, i.e., calculation of the length of sway 
path, average radial area, etc. (Diener et al. 1984; Kirby 
et al. 1987; Norr6 et al. 1987; Hasan et al. 1990). By doing 
so, these investigations ignored the dynamic character- 
istics of stabilograms, i.e., the magnitude and direction of 
displacements between adjacent points, the temporal 
ordering of a series of COP coordinates, etc. 

The majority of contemporary scientific and clinical 
investigations in postural control have directed their at- 
tention to analyzing the response of the human body to 
various external perturbations (Moore et al. 1988; Wool- 
lacott et al. 1988; Diener et al. 1988, 1991; Horak et al. 
1990; Dietz et al. 1991). Although this reflexive approach 
enables one to examine the input/output characteristics of 
different closed-loop feedback systems (Nashner 1971, 
1972), it does not consider explicitly the stabilizing roles of 
possible open-loop control schemes or the steady-state 
behavior of the human body during periods of undistur- 
bed stance. Furthermore, the experimental protocols asso- 
ciated with dynamic posturography are considerably 
more hazardous and physically taxing than those involved 
in static posturography. Also, the output of a perturbation 
or input impulse is modulated by the state of excitation or 
alertness of the individual (Horak et al. 1989; Beckley et al. 
1991). Thus, from a clinical standpoint, static posturogra- 
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Fig. 1. Typical 30-s stabilogram for a healthy young individual 
during quiet standing. Mediolateral and anteroposterior COP dis- 
placements are plotted along the x-axis and y-axis, respectively 

phy is a much simpler and  safer test to perform and  
adminis ter  to aged and  disabled individuals.  Nonetheless,  
to date, the utility of static pos turography in the clinic and  
labora tory  has been limited by the lack of a reliable, 
consistently useful approach or technique for extracting 
repeatable, physiologically meaningful  informat ion  from 
stabilograms. 

In  the present study, the problem of characterizing 
s tabi lograms is approached from the perspective of statist- 
ical mechanics. In  particular,  it is postulated that the 
movement  of the center of pressure dur ing quiet s tanding 
can be modelled as a system of coupled, correlated r andom 
walks, i.e., the mot ion  is considered to be the result of a 
combina t ion  of determinist ic and stochastic mechanisms. 
In order to test this hypothesis, probabil is t ic  tools and  
techniques from statistical mechanics will be in t roduced 
into the experimental  doma in  of posturography.  One  of 
the aims of this work is to develop a general stochastic 
model l ing framework to examine and interpret  center-of- 
pressure time series. In  this way, it is hoped that the 
present approach will lead to a greater unders tand ing  of 
the strategies utilized by the postural  control  system to 
ma in ta in  the complex, multi-degree-of-freedom structure 
of the musculoskeletal  system in equi l ibr ium with external 
forces dur ing  quiet standing.  

Materials and methods 

Application of statistical mechanics 

Fundamental concepts and principles from statistical mechanics 
have been applied to the study of a number of different neuro- 
physiological systems and phenomena (Holden 1976; Tuckwell 
1989). Bartol et al. (1991), for instance, utilized diffusion theory and 
stochastic methods for modelling miniature endplate current genera- 
tion in neuromuscular junctions. In a classic study, Gerstein and 
Mandelbrot (1964) represented the statistical properties of spike 
trains of single neurons as random walks towards an absorbing 
barrier. Recently, this work has been extended to more detailed 

analyses of how information is encoded and transmitted by neurons 
(Gorse and Taylor 1990; Longtin et al. 1991). Others have used 
statistical physics models to simulate and analyze the collective 
dynamics and emergent properties of large networks of coupled 
neurons (Peretto 1984; Sompolinsky 1988). 

The general driving principle of statistical mechanics is that 
although the outcome of an individual random event is unpredict- 
able, it is still possible to obtain definite expressions for the probabil- 
ities of various aspects of a stochastic process or mechanism. A 
classic example of a statistical mechanical phenomenon is Brownian 
motion. The simplest case of Brownian motion is the random 
movement of a single particle along a straight line. This construct is 
known as a one-dimensional random walk. In 1905, Einstein studied 
Brownian motion and showed that the mean square displacement 
(Ax2) 1 of a one-dimensional random walk was related to the time 
interval At by the expression: 

(Ax 2) =2DAt (1) 

where the parameter D is the diffusion coefficient. In words, the 
diffusion coefficient is an average measure of the stochastic activity of 
a random walker, i.e., it is directly related to its jump frequency 
and/or amplitude. The above result is easily extended to higher 
dimensions, i.e., random walks in a plane or in three-dimensional 
space. In each case, the mean square displacement and time interval 
are still linearly related. 

The term fi'actional Brownian motion was introduced by 
Mandelbrot and van Ness (1968) to designate a generalized family of 
Gaussian stochastic processes. This mathematical concept, which is 
an extension of classical or ordinary Brownian motion, has been 
used to model a number of different natural objects and phenomena, 
including landscape terrains and fluid turbulence (Mandelbrot 1983). 
Accessible introductions to the subject are provided by Feder (1988), 
Saupe (1988) and Voss (1988). For the purposes of the present study, 
it is important to point out that for fractional Brownian motion the 
Einstein relation given by Eq. 1 is generalized to the following scaling 
law: 

(Ax 2) ~ At ~" (2) 

where the scaling exponent H can be any real number in the range 
0 < H < 1. For classical Brownian motion, H =1. As can be seen from 
Eq. 2, the scaling exponent H can be determined from the slope of the 
log-log plot of the mean square displacement versus At curve. 

An important feature of fractional Brownian motion is that past 
increments in a particle's displacement are correlated with future 
increments. The only exception to this rule is the case H =�89 which, 
as stated earlier, corresponds to a classical random walk. 2 
For fractional Brownian motion, the correlation function C, which is 
time-independent, is given by the expression (Feder 1988): 

C=2(2 2H ~-1). (3) 

Note that for H > �89 the stochastic process is positively correlated, 
i.e., C>0. In this case, a fractional Brownian particle moving in 
a particular direction for some t o will tend to continue in the same 
direction for t > t o. In general, increasing (decreasing) trends in the 
past imply on the average increasing (decreasing) trends in the future 
(Feder 1988; Saupe 1988). This type of behavior is known as 
persistence. 

The opposite situation occurs for H<�89 - past and future 
increments are negatively correlated. Thus, an increasing (decreas- 
ing) trend in the past implies a decreasing (increasing) trend in 
the future. This type of stochastic behavior is referred to as 
anti-persistence. 

1The angled brackets (-) denote an average over time or an 
ensemble average over a large number of samples. 
2 The increments in displacement making up ordinary Brownian 
motion are statistically independent. 
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Experimental methods 

Twenty-five healthy male subjects of similar age (19 27 years, mean 
22.3 years) and size (body weight 59.1-85.0 kg, mean 71.8 kg; height 
165.1-186.7 cm, mean 174.9 cm) were included in the study. The 
members of the subject population had no evidence or known history 
of a gait, postural or skeletal disorder. Informed consent was 
obtained from each subject prior to participation. Postural stability 
was evaluated by using a Kistler 9287 multicomponent force plat- 
form to measure the time-varying displacements of the COP under a 
subject's feet. Each subject was instructed to stand in an upright 
posture in a standardized stance on the platform. In the standardized 
stance, the subjects' feet were abducted 10 ~ and their heels were 
separated mediolaterally by a distance of 3 cm. During the testing, 
the subjects stood barefoot with their arms comfortably at their sides 
and their eyes open and fixed on a point in front of them. Each trial 
lasted for a period of 30 s and the force platform data were sampled at 
a frequency of 100 Hz. A series of 30 trials were conducted for each of 
the first 10 subjects. This large number of tests was required to assess 
the reliability of the proposed statistical mechanical methodology. 
Rest periods of 60 s and 5 min were provided between each trial and 
between each set of 10 trials, respectively. Ten trials were conducted 
for each of the remaining 15 subjects. 

In order to assess the noise characteristics of the Kistler platform, 
a large mass of approximately 100 kg was placed on the platform. 
The kinetic data were sampled at 100 Hz for a period of 30 s. In 
theory, the COP of a static object should be constant as a function of 
time. It was found, however, that experimental noise introduced 
variations that were less than +_0.5 mm in magnitude in the meas- 
ured coordinates of the COP of the test mass. 

Data analysis and stabilogram-diffusion plots 

The COP trajectories were studied as one-dimensional and two- 
dimensional random walks. The displacement analysis was carried 
out by computing the square of the displacements between all pairs 
of points separated in time by a specified time interval At (see 
Fig. 2a). The square displacements were then averaged over the 
number of At making up the COP time series. 3 This process was 
repeated for increasing values of At. An important point to note is 
that the number of calculated square displacements was inversely 
proportional to the size of the time interval. A plot of mean square 
COP displacement versus time interval At will be referred to as a 
stabilogram-diffusion plot (Fig. 2b). 

Experimental studies concerned with diffusion-like processes 
typically analyze either a long time series of data measurements or a 
large number of smaller time series of such measurements (Shlesinger 
and West 1984; Montroll and Lebowitz 1987). In a posturographic 
investigation, it would be impractical, however, to have subjects 
stand on a force platform for extended periods of time. Physiological 
factors such as fatigue would tend to obscure the results. In the 
present study, it was therefore decided to collect a large number of 
30-s trials for each subject and to analyze averaged sets of the results 
derived from these tests. Specifically, stabilogram-diffusion plots 
were computed for each subject trial and then 10 such curves were 
averaged to obtain a resultant stabilogram-diffusion plot for a 
particular subject. Three resultant plots were thus generated for a 
subject who participated in 30 trials. 

Diffusion coefficients D (Eq. 1) were calculated from the slopes of 
the resultant linear-linear plots of mean square COP displacement 
versus time interval curves, i.e., (Ar 2 ) vs At, (Ax  2 ) vs At, and (Ay 2) 
vs At. Similarly, scaling exponents H (Eq. 2) were computed from the 
resultant log-log plots of such curves. In all cases, the slopes were 
determined by utilizing the method of least squares to fit straight 

3 In the present study, {x,} and {y,} are the mediolateral and 
anteroposterior COP time series, respectively, and {Ar 2) = { A x  2) 
q- (Ay2). 
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Fig. 2. a Diagram showing the method for calculating mean square 
planar displacement (fir a) as a function of time interval At for a 
COP trajectory made up of N data points (x~, Yl; x2, Y2;- . -; xN, YN}- 
b. A typical resultant planar stabilogram-diffusion plot ((Ar 2) vs At) 
generated from COP time series according to the method shown in 
(a). The diffusion coefficients D~ and D,~ are computed from the 
slopes of the lines fitted to the short-term and long-term 
regions, respectively. The critical point, (Atrc, (ArZ)c), is defined 
by the intersection of the lines fitted to the two regions of the 
plot. The scaling exponents Hrs and Hr~ are calculated from the 
slopes of the log-log plots of the short-term and long-term regions, 
respectively 

lines through defined portions of the aforementioned plots. All 
parameters were determined by a single investigator. 

Intraclass correlation coefficients (ICCs) were calculated to deter- 
mine the degree of agreement between the respective stabilogram- 
diffusion parameters which were extracted from the three resultant 
plots for each of the first 10 subjects. The ICC equation for a random 
effects model, i.e., ICC equation (2,1) as described by Shrout and 
Fleiss (1979), was used in the present study. This equation is given by 



the expression: 

BMS - EMS 
lCC(2, 1)= (4) 

BMS + (k-  1) EMS + k(JMS- EMS)/n 

where n is the number of subjects, k is the number of repeated 
measures (judges) per subject, and BMS, JMS and EMS are the 
between-subjects mean square, between-judges mean square and 
error mean square, respectively. See Shrout and Fleiss (1979) for 
further details. 

Although there are no rigorous, universally accepted standards 
for assessing reliability, Fleiss (1986) offered the following general 
guidelines: ICC values less than 0.4 represent poor reliability, ones 
between 0.4 and 0.75 represent fair to good reliability, and values 
greater than 0.75 correspond to excellent reliability. This categoriz- 
ation was adopted in this investigation. 

R e s u l t s  

Resultant planar stabilogram-diffusion plots for four rep- 
resentative subjects are shown in Fig. 3. It is important  to 
note that the posturographic results of Fig. 3 were quali- 
tatively different from those expected for ordinary Brow- 
nian motion. Whereas the mean square displacement of a 
random walk grows linearly with a constant slope for 
increasing time interval [see Eq. 1], the stabilogram- 
diffusion curves changed slope after a transition or critical 
point at some small At. This general feature was found in 
the calculated results for all 25 subjects who participated 
in the present investigation. As will be described below, 
C O P  trajectories also differed from classical Brownian 
motion in other ways. 

In order to parameterize the above stabilogram-diffu- 
sion plots, two regions were identified - a short-term 
region and a long-term region. These regions were separ- 
ated by a transition period where the slope of the 
stabilogram-diffusion plot changed considerably. Diffu- 
sion coefficients and scaling exponents were calculated for 
each region (Fig. 2b). Subscripts s and l will be used 
throughout the manuscript to denote the short-term and 
long-term regions, respectively. The lines fitted for com- 
putation of D~s, Djz, Hj~, and Hjl (where j = x, y, r) had r 2 
values that ranged from 0.97 to 1.00, 0.65 to 0.99, 0.90 to 
1.00, and 0.68 to 1.00, respectively. An estimate for each 
critical point was determined as the intersection point of 
the straight lines fitted to the two regions of the linear- 
linear version of each resultant stabilogram-diffusion plot 
(Fig. 2b). 

The first group 

Diffusion coefficients. The means and standard deviations 
of the calculated diffusion coefficients for the first 10 
subjects are given in Table 1. Several general points should 
be noted. Firstly, in all cases, the short-term diffusion 
coefficients were much greater than the respective long- 
term coefficients, i.e., D~s >D~ where j =  x, y, r. Secondly, 
for the majority of subjects, the anteroposterior diffusion 
coefficients were greater than their mediolateral counter- 
parts, i.e., Dyi>Dxi where i=s, I. This result was not 
unexpected given the fact that anteroposterior postural 

loo 

80 

<~I_ 2> 60 

(ram 2 ) 
40 

20 

0 
4 6 

Time Interval (s) 

311 

10 

IOO 

80 

<ar2 > 60 

(ram a ) 
40 

20 

0 
4 6 

Time Interval (s) 

10 

1(30 

80 

<N_2> 60 

(mm 2 ) 
4O 

2O 

0 
0 2 4 6 

Time Interval (s) 

8 10 

100. 

80" 

60. 
<Ar2> 

(ram2) 40 - 

20- 

0 .... . . .  

0 2 4 6 8 10 
Time Interval (s) 

F ig .  3 a - d .  R e s u l t a n t  p l a n a r  s t a b i l o g r a m - d i f f u s i o n  plots .  E a c h  res- 
u l t a n t  c u r v e  is g e n e r a t e d  f rom ten  d i f ferent  30-s C O P  t ime  series. T h e  
a p p r o x i m a t e d  s h o r t - t e r m  r eg ion  in e a c h  g r a p h  is shaded ,  a Sub jec t  1; 
b subject 3; e subject 4; d subject 5. The calculated results for these 
subjects are given in Tables 1 3 
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Table 1. Diffusion coefficients (mm 2 s 1): 
means and standard deviations for the 
first population of subjects (n = 10) 

Subject Mediolateral (x) Anteroposterior (y) Planar (r) 
D :,~ D xz D y~ D y l D ~ D~l 

1 3.23_+0.52 0.60_+0.28 5.05_+0.25 1.37_+0.07 8.28_+0.74 1.97_+0.23 
2 2.33_+0.16 0.24_+0.07 4.10_+0.62 0.55-+0.49 6.43_+0.53 0.79-+0.45 
3 3.35-+0.22 0.32-+0.14 6.10_+0.86 1.13_+0.53 9.45_+0.67 1.45_+0.57 
4 2.91_+0.54 0.64_+0.05 4.06_+0.19 1.09_+0.25 6.97_+0.47 1.73+_0.21 
5 3.47_+0.49 0.31_+0.08 3.16_+0.58 1.02_+0.15 6.62_+0.70 1.32_+0.13 
6 4.31_+0.33 0.19_+0.14 7.26_+1.84 1.00_+0.30 11.57_+2.06 1.19_+0.33 
7 2.89__+0.44 0.96_+0.63 2.72_+0.29 1.11 _+0.12 5.60_+0.73 2.06_+0.57 
8 1.20+_0.23 0.21_+0.14 2.46_+0.41 0.45_+0.11 3.66_+0.32 0.66_+0.03 
9 2.53_+0.21 0.80_+0.38 4.08_+0.53 1.47_+0.38 6.61_+0.65 2.27_+0.29 

10 0.58_+0.16 0.13_+0.04 1.63_+0.11 1.06_+0.25 2.21_+0.26 1.19_+0.22 
GM_+SD 2.68_+1.10 0.44_+0.35 4.06_+1.76 1.02+_0.40 6.74_+2.68 1.46_+0.59 

Group means (GM) and standard deviations (SD) for the respective parameters are 
last row 

given in the 

sway is typically greater than mediolateral sway. Thirdly, 
since 

(Ar 2) = (Ax 2) q- (Ay 2) (5) 

it follows that the respective planar diffusion coefficients 
are linear combinations of the diffusion coefficients calcu- 
lated for the x and y directions, i.e., Dri = D~ + Dy i. 

It should also be pointed out that two subjects, sub- 
jects 8 and 10, exhibited relatively small diffusion coeffic- 
ients Dai (Table 1). Similarly, very small (close to zero) 
long-term mediolateral diffusion coefficients were calcu- 
lated for subject 6. In the case of subject 6, his COP had 
fully explored the characteristic space for mediolateral 
sway during the early stages of the long-term region of the 
stabilogram-diffusion plot. In other words, after some 
small At, the COP no longer moved farther away along the 
x-axis, on average, from some relative central point. Under 
these conditions, the COP trajectory is said to have 
sa tu ra t ed  to some boundary value. Since the COP is 
limited to the area of support defined by a subject's feet, it 
is expected that a stabilogram would also saturate to a 
systematic boundary value in the anteroposterior direc- 
tion. However, for the maximum time interval considered 
in the present stabilogram-diffusion plots (Fig. 3), i.e., 
At,,~ x = 10 s, such an effect was not found for any of the 
subjects. Longer COP time series are needed to study this 
phenomenon. 4 

Scal ing  exponen t s .  The means and standard deviations of 
the computed stabilogram-diffusion scaling exponents for 
the first 10 subjects are presented in Table 2. For the short- 
term region, the scaling exponents His were, in general, 
much greater than 0.5. Thus, over short-term intervals 
during quiet standing, COP trajectories exhibit persistent 
behavior. On the other hand, long-term scaling exponents 
Hjl were in nine out of ten cases much less than 0.5 
(Table 2). Thus, over long-term intervals, stabilograms 
exhibit anti-persistence. The only exception to the above 

4 In a preliminary posturographic study using 60-s time series, it was 
found that several subject~ saturated to a characteristic boundary 
value in the anteroposterior direction after some relatively long time 
interval, i.e., At = 30 s. 

statement was subject 10 who displayed mean values of 
0.53 and 0.47 for Hyz and Hr~, respectively. Subject 10's 
short-term behavior was also different from the other 
subjects; for example, his mediolateral scaling exponent 
was close to that expected for an uncorrelated random 
walk, i.e., Hxs~0.5. Finally, it should be noted that the 
long-term mediolateral scaling exponent Hx, for subject 6 
was nearly zero (Table 2). This implied that subject 6's 
mean square COP displacement in the x direction was 
essentially constant for increasing values of At. This result 
is a direct consequence of the fact that the COP trajector- 
ies for subject 6 saturated to a mediolateral boundary 
value during the early stages of the long-term region (as 
noted above). 

Cri t ica l  po in t  coordinates .  The estimated values of the 
time intervals and mean square displacements defining the 
stabilogram-diffusion critical points for the first 10 sub- 
jects are presented in Table 3. In general, the transition 
points occurred at relatively small time intervals, i.e., Atjc 
ranged from 0.33 to 1.67 s with a mean of approximately 
1.0 s. On the other hand, the critical mean square displace- 
ments ranged from very small values, i.e., 1.10 mm 2 for 
(Ax2)c, to rather large ones, i.e., 29.37 mm 2 for (Ar2)c. It 
is important to point out that the critical points were ill- 
defined for many of the subjects. In these cases, the slope of 
a stabilogram-diffusion plot did not change abruptly at a 
distinct point, but rather it changed more gradually over a 
brief time period. Consequently, the numbers given in 
Table 3 should only be looked upon as rough estimates. 

Rel iabi l i t y .  The intraclass correlation coefficients for 
the diffusion coefficients, scaling exponents and critical 
point coordinates for the first 10 subjects are given in 
Table 4. The short-term diffusion coefficients Dj~ and 
scaling exponents His were highly reliable - ICC values 
ranged from 0.76 to 0.92. The reliability measures for the 
long-term scaling exponents H~z were lower but, in general, 
good to excellent (Fleiss 1986): ICC values ranged from 
0.59 to 0.83. The ICC values for the long-term diffusion 
coefficients D~g were lower than those for the short-term 
diffusion coefficients, i.e., 0.46-0.68 vs 0.83-0.90. In all 
cases, the reliability measures for the long-term stabilo- 



Table 2. Scaling exponents: means and 
standard deviations for the first popula- 
tion of subjects (n = i0) 
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Subject Mediolateral (x) Anteroposterior (y) Planar (r) 
H~ Hx, Hy~ Hy I H~ Hrl 

1 0.71_+0.02 0.26_+0.05 0.73_+0.01 0.39_+0.05 0.72_+0.01 0.35_+0.03 
2 0.74_+0.02 0.18_+0.02 0.8l_+0.03 0.17_+0.10 0.78+_0.03 0.17_+0.07 
3 0.76_+0.01 0.18_+0.02 0.78_+0.02 0.34-+0.08 0.77_+0.01 0.28_+0.06 
4 0.78-+0.03 0.31-+0.05 0.79-+0.01 0.30+_0.07 0.79-+0.02 0.31+_0.06 
5 0.78_+0.01 0.11 _+0.05 0.76-+0.03 0.31 -+ 0.01 0.77_+0.01 0.24_+0.02 
6 0.79-+0.01 0.06-+0.04 0.85-+0.02 0.17_+0.04 0.82+_0.02 0.14-+0.03 
7 0.77_+0.01 0.27-+0.10 0.79_+0.01 0.34-+0.02 0.78_+0.01 0.31_+0.04 
8 0.65_+0,02 0.21_+0.11 0.71_+0.03 0.24_+0.05 0.69_+0.02 0.23+0.01 
9 0.73-+0.03 0.29-+0.07 0.79-+0.03 0.37_+0.08 0.76-+0.03 0.34_+0.03 

10 0.57_+0.03 0.26_+0.05 0.72_+0.02 0.53_+0.05 0.68_+0.01 0.47_+0.04 
GM_+ SD 0.73_+0.07 0.21_+0.10 0.77_+0.05 0.31-+0.12 0.76_+0.05 0.28_+0.10 

Group means (GM) and standard deviations (SD) for the respective parameters are given in the 
last row 

Table 3. Critical point coordinates [time 
intervals (s) and mean square 
displacements (mm2)]: means 
and standard deviations for the first 
population of subjects (n = 10) 

Subject Mediolateral (x) Anteroposterior 0') Planar (r) 
Atxc (AX2)c Aty c (Ay~ Atrc (Ar2)c 

1 0.88_+0.27 5.38_+1.01 0.42_+0.32 3.67_+2.93 0.61_+0.28 9.26-+3.57 
2 1.20_+0.16 5.28_+0.40 1.67-+0.15 12.85-+1.99 1.50_+0.10 18.15_+2.25 
3 0 .87-+0.17  5.44_+1.49 0.33-+0.15 3.55-+2.14 0.55-+0.08 9.34_+1.22 
4 0 .81-+0.14 4.15_+1.02 1.28• 9.68_+5.02 1.06_+0.33 13.80-+5.40 
5 0 .83-+0.08  5.32-+ 1.02 1.57_+0.54 9.57_+4.21 1.15-+0.27 14.28-+3.14 
6 1.30_+0.16 10.48-+2.15 1.36_+0.19 18.86_+3.37 1.33_+0.05 29.37-+5.04 
7 1 .25-+0.36 7.15_+1.62 1.21_+0.54 6.68_+2.37 1.23-+0.40 13.90_+3.45 
8 1.23_+0.31 2.84_+1.24 1.35_+0.21 6.51_+2.03 1.35-+0.10 9.46_+1.53 
9 1.10_+0.68 5.65-+3.24 1.00_+0.25 7.22_+0.97 0.85-+0.26 11.03_+3.76 

10 1 .04-+0.39 1.10-+0.26 0.56_+0.18 1.58-+0.39 0.72_+0.23 2.80_+0.64 
GM_+SD 1.05_+0.32 5.28_+2.73 1.07_+0.55 8.02_+5.44 1.04_+0.38 13.14_+7.34 

Group means (GM) and standard deviations (SD) for the respective parameters are given in the 
last row 

Table 4. Intraclass correlation coefficients: ICC (2, 1) for the repeated 
measures of the stabilogram-diffusion parameters for the first 10 
subjects 

Diffusion coefficients 
D:,~ D:,~ D~s D~,~ D~ D,.~ 
0.90 0.46 0.83 0.46 0.90 0.68 
Scaling exponents 
H:,s Hxl H~.s Hyl Hrs Hrz 
0.92 0.59 0.76 0.73 0.86 0.83 
Critical point coordinates 
Atxc (AX2>c Atyc <Ay2)c At,c (Ar2)c 
0.04 0.68 0.58 0.73 0.62 0.80 

gram-diffusion parameters were thus lower than those for 
their short-term counterparts. This result was due largely 
to the fact that the number of mean square displacements 
for a particular C O P  time series was inversely propor-  
tional to the size of the time interval At. In general, the 
variability of a statistic describing a stochastic process 
decreases as the number of measurements made on the 
system under study is increased. Therefore, it is expected 
that the computed ICC values for the long-term posturo- 
graphic parameters would increase as the number of COP 
time series making up the resultant stabilogram-diffusion 
plots was increased. 

In addition, it should be noted that the reliability 
measures for the critical point coordinates were highly 
variable: ICC values for the critical time intervals ranged 
from 0.04 (poor) to 0.62 (good) whereas those for the 
critical mean square displacements ranged from 0.68 
(good) to 0.80 (excellent). This result can be attributed in 
part  to the inherent limitations of the present method for 
calculating the transition point coordinates. As described 
earlier, the position of a critical point was estimated as the 
point of intersection of the best-fit straight lines that were 
determined for the two regions of a stabilogram-diffusion 
plot. Consequently, the variability of both the short-term 
and long-term diffusion coeff• which could be com- 
bined in either additive or subtractive ways, directly 
influenced the calculated values and associated variability 
of the critical point coordinates. 

The second group 

The ranges, group means and standard deviations for the 
diffusion coefficients, scaling exponents and critical point 
coordinates for the second subject population (n = 15) are 
listed in Table 5. The general qualitative features described 
for the posturographic results of Tables 1-3 are also 
appropriate for those presented in Table 5. It is important  
to note, however, that one of the 15 subjects had a long- 
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Table 5. Ranges, group means and 
standard deviations (SD) for the diffusion 
coefficients, scaling exponents, and 
critical point coordinates for the 
second population of 15 subjects 

Parameter Range Group Mean 
+_SD 

Diffusion coefficients (mitt2 s -1) Dxs 1.05-12,44 3.94+2.81 
Dxz 0.17-2.09 0.54 _ 0.47 
Dys 2.57 16.03 7.27+_4.11 
Dyt 0.43-6.73 2.51 _ 1.76 
Dr, 3.62 26.03 11.21 + 6.43 
Drt 0.60-7.51 3.05 + 2.06 

Scaling exponents Hx~ 0.634).81 0.74 -- 0.05 
H-x~ 0.124).32 0.23 +_ 0.05 
Hy~ 0.704).83 0.77 _+ 0.04 
Hrz 0.18-0.50 0.38_+0.10 
Hr~ 0.70-0.82 0.76 +_ 0.04 
Hr~ 0.18-0.45 0.34 +- 0.08 

Critical point coordinates (s) At~c 0.63 1 . 8 5  1.06_+0.42 
Aty c 0.35-1.85 0.97 • 0.46 
At~ 0.44-1.30 0.92 -+ 0.29 
(Ax 2)c 1.88 20 .70  7.75+_5.74 

Critical point coordinates (ram 2) <Ay2>~ 3 .87 -47 .63  12.69_+ 10.71 
(Ar 2)c 5.50-64.64 19.65 -+ 15.72 

term anteroposterior scaling exponent (Hy~) equal to 0.5. 
As mentioned earlier, this is the result expected for a 
classical, i.e., uncorrelated, random walk. 

Quantitatively, the group means for the diffusion coef- 
ficients Djl given in Table 5 were, in all cases, larger than 
those listed in Table 1. This was due mainly to the fact that 
a small number of the subjects in the second population 
had very large diffusion coefficients. On the other hand, 
the group means for the scaling exponents and critical time 
intervals for the second experimental population (Table 5) 
were in close agreement with those for the first population 
(Tables 2 and 3, respectively). However, the respective 
group means for the critical mean square displacements 
given in Table 5 were larger, in all cases, than those 
calculated for the first 10 subjects (Table 3). These dis- 
placement differences were a direct consequence of the fact 
that the critical time intervals for the two groups were 
equivalent but the average short-term diffusion coeffic- 
ients for the second subject population were larger than 
those for the first. 

Mathematical model development 

In this study, it was shown that posturographic time series 
were qualitatively different from those predicted for ordi- 
nary Brownian motion. As described earlier, the diffusion 
curves for a classical random walk grow linearly and 
unbounded with increasing time interval whereas stabilo- 
gram-diffusion curves change slope after a transition point 
at some small At and then saturate to a relatively constant 
mean square displacement after some large time interval. 
Furthermore, whereas the scaling exponent for an un- 
correlated random walk should be equal to 0.5, it was 
demonstrated that the scaling exponents for COP trajec- 
tories are greater than and less than 0.5 (persistence/anti- 
persistence) for "short-term and long-term intervals, 
respectively. 

To account for these experimental observations and 
offer a possible physiological explanation, the movements 
of the COP during undisturbed stance can be modelled as 
a system of coupled, bounded random walks. The pre- 
sumed form of the model was motivated by the calculated 
dynamic differences between the short-term and long-term 
regions of the stabilogram-diffusion plots and by the 
following mechanical/physiological considerations: (1) the 
erect human body can, in theory, assume an infinite 
number of different geometric configurations and remain 
in equilibrium with external forces; (2) since skeletal 
muscle is incapable of producing purely constant forces 
(De Luca et al. 1982), body segments acted upon by active 
muscles are incapable of maintaining purely constant 
positions and/or orientations. The preliminary mathemat- 
ical model is composed of two stochastic systems (Fig. 4). 
The first system consists of a random walker which is 
attached to a nonlinear spring at the center of a bounded 
circular area. If the random walker moves away from the 
center of the circle (its equilibrium point), it is acted upon 
by a nonlinear, elastic restorative force. The second sys- 
tem, which is linearly superimposed onto the first, consists 
of another random walker which is bounded by a smaller 
circular area. In the smaller circle, the walker is acted upon 
by a system of threshold-based alternating springs, which 
are attached around the boundary. Once the random 
walker reaches the perimeter of its bounded area, the 
spring acting upon the walker is deactivated and the one 
located on the opposite side of the bounded area is called 
into play. Thus, for this configuration, the center of the 
bounded area is not a stable equilibrium point. In sum- 
mary, the COP random walker for each modelled system 
is perturbed at any given time by both a randomly 
fluctuating force and a stabilizing and /o r  destabilizing 
spring force. 

The behavior of the above posturographic model can be 
described by a simple set of equations. For example, the 
dynamics of the first COP random walker (which moves 
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Fig. 4. Diagram of the model system of coupled, bounded random 
walks. The first system consists of a COP random walker which is 
acted upon by a spring (with stiffness k~) which is attached to the 
center of the larger circular area. Linearly superimposed onto this 
random walker is another bounded system. In the smaller bounded 
area, a second COP random walker is acted upon by a system of 
threshold-based alternating springs. In the diagram, the random 
walker is initially acted upon by a spring (with stiffness k,) attached at 
r E. After the random walker crosses the boundary at r~,, the first 
spring is turned offand the spring (with stiffness k',) attached at -r~, 
is activated 

100- 

80- 

<Ar~ > 60 - 

(mm2) 40- 

20- 

0 2 4 6 8 I0 

Time Interval (s) 

Fig. 5. Resultant planar stabilogram-diffusion plots generated by 
the posturographic model of Fig. 4. Each resultant curve is generated 
from ten different 30-s simulated COP time series. The approximated 
short-term region for the system is shaded 

within the larger bounded area) is governed by the 
expression: 5 

l _ l  ~ l +  i i  r , + l - r , +  F (ro,0-r ,)  (6) 

where ~ and rn+ 1 r n are the positions of the random walker 
at times t = n + 1 and t = n, respectively, ~z represents the 
influence of a randomly fluctuating force, and F~(r t) repre- 

s The origin of each local coordinate system is located at the center of 
its bounded area. 
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sents the influence of a restorative spring located at the 
center (rZo,0) of the bounded area. The behavior of the 
second COP random walker (which moves within the 
smaller bounded area) is governed by the following 
equations: 

r~+~ = r. ~ + 4.~ + F~(r~- r s) if [r.~[ < I rgJ (7) 

r,~+l = r, ~ + ~ + FS(-  r~, - r, ~) if lrSl _> I rg] (8) 

where the above terms are equivalent to those in Eq. 6 
except that FS(r ~) in Eq. 7 represents the influence of a 
perimeter-based spring attached at point r~. If the second 
COP random walker crosses the boundary at r{,, then the 
first spring acting in Eq. 7 is turned off and a spring 
attached at point -r~,  is activated, as shown in Eq. 8 and 
Fig. 4. 

The above equations formed the basis of an initial- 
phase computer program. In order to compare the simu- 
lation results with experimental data, the computer model 
was used to generate different sets of 10 time series of 3000 
data pairs. Resultant stabilogram-diffusion curves were 
then calculated according to the methods described 
earlier. Representative results of the model are shown in 
Fig. 5. The simulation curves of Fig. 5 are remarkably 
similar in shape and form to the experimental plots of 
Fig. 3. For  example, it is clear that the simulated diffusion 
curves changed slope after some small time interval, i.e., 
At,-~ 1.0 s. Moreover, over short-term and long-term inter- 
vals, the stabilogram model exhibited persistent (simu- 
lated Hj~>0.5) and anti-persistent (simulated Hit<0.5) 
behavior, respectively. Finally, an important feature of the 
present computer model was that the qualitative and 
quantitative characteristics of the simulated stabilogram- 
diffusion curves could be modified by varying the magni- 
tude of the different parameters that defined the model's 
behavior. 

Discussion 

Reliability 

Before any new technique can be usefully employed as a 
scientific and/or clinical tool,, its reliability must be asses- 
sed. In this study, intraclass correlation coefficients were 
calculated to determine the degree of agreement between 
repeated measures of the respective stabilogram-diffusion 
parameters - diffusion coefficients, scaling exponents, and 
critical point coordinates. It was shown that the majority 
of the proposed posturographic parameters demonstrated 
good to excellent reliability. The key analytical advance- 
ment of the present work was the utilization of trial 
averaging. Due to the stochastic nature of stabilograms, it 
is difficult, conceptually and practically, to obtain repeat- 
able parameters from individual 30-s COP time series. As 
evidenced by the reported results, this task is greatly 
simplified by looking at ensemble averages of a relatively 
small number of experimental sequences, i.e., ten 30-s tests. 
As mentioned earlier, it is expected that the reliability of 
the respective parameters would improve as the number of 
COP time series making up the resultant stabilogram- 
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diffusion plots was increased. However, because of the 
complications associated with subject fatigue, any clinical 
or scientific investigation in posturography will have to 
accept some trade-off between reliability and experimental 
practicality. 

Open-loop and closed-loop control strategies 

By analyzing stabilograms as fractional Brownian motion, 
it was revealed that at least two distinctly different neuro- 
muscular control mechanisms - one which exhibits persis- 
tence and another which exhibits anti-persistence - are 
functioning during quiet standing. More specifically, these 
analyses suggest that over short-term intervals open-loop 
control schemes are utilized by the postural control sys- 
tem, whereas over long-term intervals closed-loop control 
mechanisms are called into play. These issues will be 
discussed in greater detail in the following sections. 

Physiologically meaningful posturographic parameters 

Posturography has been limited by the lack of an analyt- 
ical technique for extracting physiologically meaningful 
parameters from stabilograms. Since the COP is a meas- 
ure of whole-body dynamics, it represents the summed 
effect of a number of different neuromusculoskeletal com- 
ponents acting at a number of different joints. This inher- 
ent feature has confounded the majority of previous 
attempts at interpreting stabilograms from a motor 
control perspective. An advantage of the proposed stabilo- 
gram-diffusion parameters is that they can be directly 
related to the resultant steady-state behavior and func- 
tional interaction of the open-loop and closed-loop neuro- 
muscular mechanisms underlying postural control. 

Diffusion coefficients, for example, reflect the level of 
stochastic activity of the COP along the mediolateral or 
anteroposterior axis or about the plane of support. These 
measures can thus be used to quantify postural instability, 
i.e., larger Dji correspond to a less tightly regulated or 
"more random" control system and vice versa. 6 In light of 
these comments, several aspects of the calculated results 
should be discussed. Firstly, it was found that the short- 
term diffusion coefficients were much larger than the long- 
term coefficients. This suggests that the open-loop control 
mechanisms which dominate short-term intervals have a 
higher level of stochastic activity than the closed-loop 
control mechanisms which are utilized over long-term 
intervals. Secondly, it was shown that the anteroposterior 

6 It is important to point out, however, that an individual may have 
relatively large diffusion coefficients Dj~ and relatively small critical 
mean square displacements and/or saturation points. In this case, the 
postural control system allows a relatively high level of stochastic 
activity within a relatively small region of the base of support. It 
should also be noted that it is possible for two individuals to have 
similar scaling exponents but significantly different diffusion coeffic- 
ients. For this situation, the COP step increments for the two 
subjects are similarly correlated, but the average mean square 
displacement (over a given time interval) is larger for one subject as 
compared to the other. 

diffusion coefficients were greater than the respective 
mediolateral coefficients. This asymmetry can be attribu- 
ted largely to the geometry of the lower limb. The ankle or 
tibiotarsal joint is, for example, mainly a simple hinge joint 
which allows rotation (plantarflexion/dorsiflexion) in the 
sagittal plane. Thus, from a passive mechanical stand- 
point, upright bipedal stance is considerably more stable 
in the frontal plane than in the sagittal plane. Thirdly, it 
can be seen in Tables 1 and 5 that the magnitudes of the 
diffusion coefficients were highly variable amongst young 
healthy subjects. For instance, there was an order of 
magnitude difference in the calculated value of the long- 
term planar diffusion coefficient Drt for subject 10 (Table 1) 
and one of the subjects of the second population (Table 5): 
1.19 vs 26.03 mm 2 s-1. This implies that subject 10 was 
more stable than the other individual. On a larger scale, 
these differences suggest that the steady-state behavior of 
the control mechanisms involved in maintaining erect 
posture can be quite variable even amongst a population 
of age-matched, anthropometrically similar, healthy 
individuals. 

The second set of stabilogram-diffusion parameters 
were the scaling exponents, which quantify the correlation 
between the step increments making up an experimental 
stabilogram time series. For  the short-term region, the 
computed scaling exponents were much greater than 0.5. 
Thus, over short-term intervals during quiet standing, the 
COP behaved as a positively correlated random walk, i.e., 
one which tends to move away from some relative equili- 
brium point following an external perturbation (indicative 
of open-loop control). On the other hand, it was found that 
the scaling exponents were much less than 0.5 for the long- 
term region. Thus, over long-term intervals, the COP 
behaved as a negatively correlated random walk, i.e., one 
which tends to return to a relative equilibrium point 
following a perturbation (indicative of closed-loop con- 
trol). These results imply that for the majority of subjects 
the movements of the COP during undisturbed stance are 
not purely random, 7 i.e., Hji r Instead, these motions 
most likely represent the combined output of co-existent 
deterministic and stochastic mechanisms/ Finally, it 
should be noted that the scaling exponent inter-subject 
variability (Tables 2 and 5) was less than that for the 
diffusion coefficients (Tables 1 and 5): the coefficients of 
variation for the scaling exponents were, in general, 
smaller than those for the diffusion coefficients. Thus, this 
functional aspect of the postural control system, i.e., the 
stabilizing/destabilizing effects of different control mech- 

7 A small number of the subjects had scaling exponents which were 
approximately equal to 0.5, i.e., the result expected for classical 
Brownian motion. 
s It is important to emphasize the fact that the COP displacements 
measured in the present study were principally associated with 
postural sway and not instrumentation noise - the maximum 
fluctuations introduced by instrumentation noise were less than 5% 
of the maximum displacement of the COP during a typical 30-s trial 
(see Materials and methods). The presence of low levels of elec- 
tronic/instrumentation noise would, however, decrease the correla- 
tion between the COP step increments and thereby shift the values of 
the respective scaling exponents closer to 0.5. 
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anisms, may be more consistent within a particular subject 
population. 

The third set of posturographic parameters were the 
critical point coordinates the critical time intervals and 
critical mean square displacements. From an analytical 
standpoint, these coordinates approximate the transition 
point at which the slope of a resultant stabilogram- 
diffusion plot changes considerably. From a physiological 
standpoint, these coordinates represent the point at which 
the postural control system switches over from open-loop 
control to closed-loop control. On average, this crossover 
point occurred at relatively small time intervals, i.e., 
Atjc ~ 1.0 s, and mean square displacements, i.e. ~Aj2)c was 
less than 20.0 mm 2. A related parameter which was not 
fully explored in the present investigation was the satura- 
tion point. This point, which is a function of mean square 
displacement and time interval, corresponds to a sys- 
tematic boundary value for large-scale COP movement 
and the characteristic time it takes the COP to saturate to 
that value. Beyond the saturation point, the diffusion 
coefficients and scaling exponents should approximate 
zero. The saturation point can thus be viewed as an 
average measure of the operational "safety limits" allowed 
by an individual's postural control system during quiet 
standing. It was observed that several subjects saturated to 
a boundary value in the mediolateral direction in At < l0 s. 
A similar anteroposterior effect was not seen in any of the 
subjects. This posturographic phenomenon - anteropos- 
terior postural sway saturation - requires longer COP 
time series and correspondingly larger Atm, x. 

Physiological interpretations 

During any given task, the human postural control system 
receives information from the visual, vestibular and soma- 
tosensory systems. In the past, it was generally believed 
that these afferent signals were utilized to regulate and 
continually modify the activity of the musculature during 
quiet standing. The present posturographic results, how- 
ever, do not support this view. Instead, these analyses 
indicate that in addition to the above closed-loop feedback 
mechanisms, the postural control system also employs 
open-loop control schemes, the output of which may take 
the form of descending commands to different postural 
muscles. Since skeletal muscles are incapable of producing 
purely constant forces (De Luca et al. 1982), these open- 
loop activation signals result in small mechanical fluctu- 
ations at various joints of the body. The present work 
suggests that these fluctuations and their associated drift 
effects are left unchecked by the postural control system 
until they exceed some systematic threshold, after which 
corrective feedback mechanisms are called into play. As 
noted above, the stabilogram-diffusion critical point co- 
ordinates quantify the spatial and temporal characteristics 
of this switching phenomenon. It is important to point out 
that within this conceptual model, the central nervous 
system still continually receives afferent information from 
peripheral sensory organs; however, such information is 
not used to modulate the efferent signals transmitted to 
postural muscles unless a certain threshold value is ex- 

ceeded. This open-loop/closed-loop control strategy, 
which allows a certain amount  of "sloppiness" in balance 
control, may have evolved to take account of the inherent 
time delays of feedback loops and to simplify the task of 
integrating vast amounts of sensory information when the 
system is not in jeopardy of instability, 

There are a number of possible sources which may set 
the coordinates of the stabilogram-diffusion critical point. 
Firstly, for example, its position may be determined by a 
proprioceptive "dead zone", i.e., a region over which slight 
variations in body segment position and orientation are 
left unchanged. Within this scenario, the critical mean 
square displacement quantifies an individual's first-level 
stability limit, i.e., a primary feedback threshold. An 
alternative way one could get a "dead zone" would be 
through the interaction of postural responses with the 
body's inertia. Postural responses have time delays of 
~ 1 0 0 m s  (Nashner 1977), whereas the musculoskeletal 
system has rigid-body time constants which may be on the 
order of ~1  s. The system inertia may thus cause a 
temporal "dead zone" for response during which the 
central nervous system is in an open-loop control mode. 
Another possibility is that the position of the transition 
point is related to the destabilizing influence of gravity. If 
this were the case, it would be expected that the critical 
point coordinates would change in a reduced-gravity 
environment. Finally, the stabilogram-diffusion critical 
point may be established by fixed, pre-programmed cent- 
ral commands that are utilized in quiet stance. Central 
programs for postural control have previously been dis- 
cussed in the context of perturbation experiments (Horak 
and Nashner 1986; Dietz 1992). 
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