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Nawab SH, Wotiz RP, De Luca CJ. Decomposition of indwelling
EMG signals. J Appl Physiol 105: 700–710, 2008. First published
May 15, 2008; doi:10.1152/japplphysiol.00170.2007.—Decomposi-
tion of indwelling electromyographic (EMG) signals is challenging in
view of the complex and often unpredictable behaviors and interac-
tions of the action potential trains of different motor units that
constitute the indwelling EMG signal. These phenomena create a
myriad of problem situations that a decomposition technique needs to
address to attain completeness and accuracy levels required for vari-
ous scientific and clinical applications. Starting with the maximum a
posteriori probability classifier adapted from the original precision
decomposition system (PD I) of LeFever and De Luca (25, 26), an
artificial intelligence approach has been used to develop a multiclas-
sifier system (PD II) for addressing some of the experimentally
identified problem situations. On a database of indwelling EMG
signals reflecting such conditions, the fully automatic PD II system is
found to achieve a decomposition accuracy of 86.0% despite the fact
that its results include low-amplitude action potential trains that are
not decomposable at all via systems such as PD I. Accuracy was
established by comparing the decompositions of indwelling EMG
signals obtained from two sensors. At the end of the automatic PD II
decomposition procedure, the accuracy may be enhanced to nearly
100% via an interactive editor, a particularly significant fact for the
previously indecomposable trains.

signal decomposition; electromyographic signal; superposition of ac-
tion potentials; detection of recruitment; force-varying contractions

THERE IS A CLEAR AND PRESENT need for an accurate, fast, and
easy to use electromyographic (EMG) signal decomposition
technology for the field of motor control and motor disorders.
By accurately decomposing the EMG signal into its constituent
motor unit action potential trains (MUAPTs), it is possible to
image the firing behavior of motor units. Understanding the
normal and abnormal behavior of motor unit control is funda-
mental to seeking surgical, pharmacological, and exercise-
based interventions. Other important applications of accurate
decomposition technology exist in areas such as aging, exer-
cise physiology, space medicine, and ergonomics, where it is
of interest to understand whether the control of muscles is
altered as a consequence of aging, exercise, exposure to mi-
crogravity, fatigue, and excessive and prolonged force produc-
tion.

To usefully serve a significant numbers of applications, an
EMG signal decomposition system should be able to achieve
high levels of decomposition accuracy and speed. However,
speed must not be attained at the expense of accuracy or
completeness. Decomposition systems that produce only two
or three MUAPTs or that produce incomplete or insufficiently
accurate results are of limited value to the scientific and clinical

communities. To emphasize the importance of accuracy, two
different decompositions of the same EMG signal are pre-
sented in Fig. 1: one with 80% accuracy and the other with
96% accuracy. Figure 1, top, presents the firing times of the
individual decomposed MUAPTs, Fig. 1, middle, presents the
same data with the interpulse interval plotted vertically; and
Fig. 1, bottom, presents the firing rates of the motor units. It is
clear that the decomposition of 80% accuracy provides a
confused representation of the firing rates of motor units,
whereas the decomposition of 96% accuracy provides an or-
derly expression of the firing rates of the motor units where the
common fluctuation and hierarchal organization of the firing
rates of the motor units is evident. (The method for measuring
the accuracy of the decomposition will be addressed in METH-
ODS.) Clearly, the 80% result would not be acceptable in many
practical applications even if the corresponding decomposition
program were speedier than the one that produced the 96%
result.

The complex task of accurately decomposing the EMG
signal has been an alluring goal for numerous investigators
over the past four decades. Dominant among the pioneering
attempts were the works of Gerstein and Clark (17), Simon
(44), Keehn (23), and Glaser and Marks (18). Applications to
separate the indwelling EMG signals did not appear until a full
decade later when the works of LeFever and De Luca (25, 26),
LeFever et al. (27), Andreassen (4), Guiheneuc et al. (19),
Mambrito and De Luca (30), McGill et al. (33), and Broman
(6) became known. Later, other researchers published various
attempts at decomposing the indwelling EMG signal (8, 15, 16,
29, 34, 41, 46, 47, 52) and its surface counterpart (13, 21, 24).
Although previous approaches to decomposing the indwelling
EMG signal have yielded significant successes, there is ample
need for improvements. For example, the PD I system of
LeFever and De Luca (26) has a fully automatic mode that has
a typical accuracy of �65% (30). Furthermore, it requires
time-consuming user-interactive editing of its results (up to 15
min/s of EMG signal with as few as 6 MUAPTs) to accurately
resolve some of the complex superpositions and to accurately
pinpoint motor unit recruitment and derecruitment times. Even
then, user-assisted PD I typically attains 100% accuracy for at
most eight concurrent MUAPTs within an indwelling EMG
signal (30). A more recent system, the interactive EMGLAB
program (34), is also predicated on the availability of time-
consuming user intervention. In this case, the input signal is
processed in 2-s segments, and each segment has to be “in-
spected manually to complete the decomposition and verify the
results.” Signals with 9–12 decomposable MUAPTs are
claimed to require manual effort on the order of 10–20 min/s
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of signal (34). Another recent system, EMG-LODEC (52),
utilizes “supervised classification” of signal segments judged
to not involve MUAP superpositions. The supervision in the
classification process relies on the cognition and skills of an
experienced human operator. That system is also limited by the
fact that it cannot automatically resolve more than two over-
lapping MUAPs because “the computation time is prohibitive
for more [overlapping MUAPs].” Unsupervised classification
was utilized in another recent system (16), but it also was
unable to accurately resolve complex superpositions involving
the overlap of several MUAPs each. A significant accuracy
drop-off is thus observed with this system when more than
eight MUAPTs are involved (16).

In this paper, we describe practically and conceptually
significant improvements to the precision decomposition tech-
nique of PD I that was originated by LeFever and De Luca and
underwent refinements over a period of 2.5 decades. As a result
of our recent improvements, a new system, PD II, has been
implemented. PD II represents a significant advance over
existing decomposition methods for indwelling EMG signals:
1) it decomposes even relatively low-amplitude MUAPTs with
superior accuracy and speed, and 2) it manages the complex-
ities of force-varying contractions with significantly greater
success.

These characteristics of PD II were largely enabled by the
incorporation of sophisticated signal processing and artificial
intelligence technologies into its design. Some of these im-

provements have been summarized in recent conference pub-
lications (20, 36–40).

BACKGROUND

It has been nearly three decades since the foundations of the
original precision decomposition technique were laid down in
the PD I system. This system was specifically designed to
enable physiological experiments for the motor control com-
munity. It has been described previously (6, 12, 25, 26, 30).
The PD I technique has been useful for decomposing indwell-
ing EMG signals during isometric contractions and has been
used in numerous physiological studies by our group as well as
by others (1–3, 10, 11, 14, 22, 31, 32, 42, 45, 49).

PD I decomposes indwelling EMG signals detected with a
quadrifilar needle sensor (9–11) or a quadrifilar wire sensor
(12) (see Fig. 2 for details). Three differential channels of
EMG signals are used from these sensors. The shape of an
action potential is represented differently on each channel due
to the different orientation of the detection surfaces on the
sensor and the source of the action potential.

The PD I technique consists of identifying action potentials
in the indwelling EMG signal and assigning them to specific
motor units by classifying the shapes and amplitudes of the
action potentials. The assignments of the action potentials are
made via a maximum a posteriori probability (MAP) algorithm
on the basis of template matching and the probability of firing

Fig. 1. Decomposition results for 80% accuracy (left) and 96% accuracy (right) of the same underlying indwelling electromyographic (EMG) signal. In each
case, there is a “bar plot” (top) showing the firing times for the decomposed motor unit action potential trains (MUAPTs), a “dot plot” (middle) showing the
interpulse intervals for the decomposed MUAPTs, and a plot of the firing rate curves (bottom) derived for the 8 decomposed MUAPTs.
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of the individual motor units being tracked. Artificial intelli-
gence techniques are used to track slight modifications in the
shapes of the action potentials and for addressing superposition
of action potentials. The PD I algorithm is typically able to
automatically decompose five MUAPTs and occasionally up to
eight MUAPTs in the indwelling EMG signal with an accuracy
of 60–70% (10, 11). The technique has provisions for using an
interactive editor program to obtain a decomposition accuracy
of 100% in some EMG signal records.

Challenges for improved decomposition of EMG signals.
For a decomposition technology to be more useful to the
researcher or clinician than PD I, it must possess the accuracy
and completeness characteristics described in the Introduction.
More specifically, its algorithms must be able to deal with four
major complexities that occur within the signal. These com-
plexities are shown in Fig. 3, and they are 1) superposition of
action potentials from different motor units, 2) large dynamic
range of the amplitudes among the action potentials of different
motor units of interest, 3) shape changes across the different
action potentials of each motor unit (due to slight movement
between the sensor and muscle fibers and/or intracellular pro-
cesses), and 4) similarity of shape at various times among the
action potentials of different motor units. These phenomena
often also act in concert with each other to make the decom-
position task all the more difficult. In METHODS, we present the
algorithms for our improved precision decomposition tech-
nique, which we refer to as PD II.

Knowledge-based system development. The classifiers used
in the PD II system have their theoretical foundations in
statistical signal processing, pattern recognition, and graph
search. However, these classifiers have many parameters asso-
ciated with them that have to be “tuned” for the overall system
to give the desired level of decomposition performance. In
developing PD II, we were particularly concerned that this
tuning should be performed by the system itself rather than be
left to the system user. It was also important that the tuning be
entirely signal dependent rather than be influenced by any input
from the user regarding the signal source (e.g., identification of
the source muscle). For developing such a self-tuning system,
we decided to utilize a knowledge-based artificial intelligence
framework previously developed by us, which we call Inte-

grated Processing and Understanding of Signals (IPUS). (28,
35). A C�� software platform (50) was used to incorporate
the IPUS framework within PD II development. The IPUS
framework permits the system designer to conveniently define
specialized rules (the entire collection of these rules constitute
a “knowledge base”) that are used at run time to decide how to
tune the algorithm parameters in response to various statistics
computed from the signal. For example, one of the rules
associated with the MAP classifier in PD II continuously
updates a statistic for how many MUAPT candidates per
detection are being generated for application of the MAP
criterion; if the statistic takes on a specified value, the rule
causes an increase in the value of one of the classifier param-
eters so as to relax the criterion for candidate generation.

METHODS

There are three major classification methodologies underlying the
PD II system. The first is the MAP classifier, whose design is based
on making the decision as to which MUAPT is “most likely” to have
given rise to a newly observed MUAP. The MAP receiver is most
error prone 1) when the MUAP shape of a particular MUAPT changes
too rapidly and 2) when there is superposition between two or more
MUAPTs. The first problem in PD II is dealt with via the integration
(INT) classifier, and the second problem is dealt with via the super-
position (SUP) classifier.

The theoretical foundation of the MAP classifier of PD II is the
same as that for the MAP classifier used in PD I. The INT classifier
is based on the innovative application of the concept of similarity/
dissimilarity pursuit (5) to the problem of deciding whether the MAP
classifier has classified different parts of the same MUAPT as two or
more different MUAPTs. The key innovation behind the SUP receiver
is the application of statistical utility maximization (48) to the prob-
lem of resolving complex superposition between two or more
MUAPs.

MAP classifier. There are three key concepts involved in the
structuring of this classifier. The first concept is that of identifying
each signal segment that could correspond to a MUAP or a contiguous
superposition of MUAPs. The second concept is to apply a prelimi-
nary shape criterion (PSC) to rule out MUAPTs from a segment on the
basis that the MUAP shapes for those MUAPTs are distinctly differ-
ent from the segment data. The third concept is to apply the MAP
classification criterion (MAPCC) to select the “most likely” match to
the segment data from among the MUAPTs whose MUAP shapes

Fig. 3. Illustration of various categories of challenges that arise in the decom-
position of EMG signals: similar motor unit action potential (MUAP) shapes,
changes in MUAP shape, large dynamic range in MUAP amplitudes, and
superposition of MUAPs. MU, motor unit.

Fig. 2. Details of the quadrifilar needle sensor and how we used it to obtain 3
differential channels (V1, V2, V3) of EMG signal and 1 cannula-derived signal
(Vc) for spike-triggered averaging. Inset: details of a quadrifilar wire sensor
that we sometimes used instead of the needle sensor.
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have not been ruled out by the PSC. Further details of the classifier are
given below.

The MAP classifier generates MUAPT classifications (represented
via symbols u1,u2, . . . ,um) that are supported by the underlying EMG
signal after it has been broken down into segments determined to
contain signal amplitudes within an order of magnitude of the maxi-
mum signal level. After identification (via peak detection within
signal segments) of candidate MUAP data vector �� , the MAP classi-
fier assigns it to one of the MUAPT classifications, say uj, provided
the data meet a PSC and a MAPCC. The PSC requires that

XNj
2 � �Aj � 1�2 � C1 (1)

�Aj � 1� � C2 (2)

where the values C1 and C2 are algorithm parameters, and

Aj �
�� � r� j

�r� j�2 (3)

while

XNj �
��� � Ajr� j�2

�r� j�2 (4)

where r�j represents a “template” for the “central peak” of the jth
MUAPT. The dot product is carried out after alignment of the
template peak (at 2.5 times the original sampling rate) with the data
peak. If the PSC is satisfied by uj, the MAPCC requires that

��� � r� j�2

�r� j�2 � 2�2 ln P�uj� �
��� � r�i�2

�r�i�2
� 2�2 ln P�ui�,

1 � i � M, i � j.

(5)

In Eq. 5, �2 is the noise level (an algorithm parameter) and P(uj) is
an algorithm parameter that represents the a priori probability that
MUAP data �� supports classification uj. If MUAP data �� does not
support one of the prior symbols, the MAP classifier declares data ��
as support for a new MUAPT classification. Once the entire EMG
signal has been analyzed, a “symbol filtering” stage rejects MUAP
classifications that are determined to be weakly supported by the
signal data. The symbol filtering is primarily based on results from an
“extended PSC” to each instance of classified MUAP data. The
extended PSC is the same as the PSC except that it replaces r�j in Eqs.
3 and 4 by a significantly longer version of the template beyond its
“central peak” to include “side lobes.”

INT classifier. A situation that is problematic for PD I algorithms
involves motor units whose action potentials have similar shapes (see
Fig. 3). Although it attempts to distinguish such shapes from each
other, the PD I algorithm often inadvertently discriminates between
action potential shapes that belong to the same motor unit but that
experience significant shape change due to relative muscle fiber-to-
sensor displacements. In the database of challenging EMG signals that
we have used for algorithm evaluation, this type of phenomenon
affects almost 50% of the decomposed action potential trains. The
INT classifier of PD II was developed to address such situations.

The algorithm parameters associated with the MAP classifier have
their values assigned in a manner that minimizes the fraction of
classifications that are unreliable. However, to avoid false alarms, the
MAP classifier often produces different MUAPT classifications for
different MUAP subgroups of the same underlying MUAPT. The INT
classifier of PD II is designed to integrate different classifications
corresponding to the same underlying MUAPT. Further details of the
INT classifier are given below.

Define a set S of MUAPT classifications produced by the MAP
classifier. The goal of the INT classifier is to produce another set (S�)
of MUAPT classifications such that any underlying MUAPT has at
most one MUAPT classification corresponding to it in S�. Each
element in S� is either an element of S or it is obtained via an

“integration” operation, say Q, applied to a subgroup of S. We adopt
the notation u1,2 � u1 Q u2 to represent a MUAPT classification that
includes each MUAP of classification u1 in S as well as each MUAP
of classification u2 in S but includes no MUAP of any of the other
MUAPT classifications in S. More generally, assuming S �
{u1,u2, . . . uN}, we can define an integration operation as resulting in
ui1,i2 . . . ,ik � ui1 Q ui2 Q ui3 Q . . . Q uik, where ij 	 ik, 
 	 k. The
INT classifier can now be defined as a greedy algorithm (5) for
similarity/dissimilarity pursuit that on each iteration seeks to place in
S� an element û � uı̂1,ı̂2 . . . ,ı̂k such that

c�uî1,î2, . . . , îk
� � min

1 � k � N
1 � i � N

·
·
·l � ik � N

�c�ui1,i2, . . . , ik
�� (6)

and to remove the elements uı̂1. . .uı̂k from S. The function c(u) is an
estimated integration “cost” that is the sum of an inclusion measure
and an exclusion measure. The inclusion measure relates to the degree
of interelement dissimilarity within u. The exclusion measure relates
to the cross-element similarity between the elements of u and the
elements of S not in u.

SUP classifier. The most significant signal dynamic taking place in
the EMG context is the superposition of different action potentials
(see Fig. 3). The overlap between superimposed MUAPTs would not
be statistically significant if different MUAP shapes were statistically
uncorrelated with each other. However, most MUAP shapes have a
certain degree of correlation. The SUP receiver is designed to explic-
itly take these correlations into account while estimating a “likeli-
hood” statistic for each MUAP shape. These “likelihood” values are
then utilized within a statistical utility maximization procedure (48)
for deciding which MUAPs are actually present. Details of the
likelihood estimation process are given below.

To address the superposition phenomenon, the SUP classifier
applies an “iterative correlation procedure” to the kth candidate data
��k where one or more weak classifications were rejected by the MAP
classifier. This procedure is designed to estimate likelihood values for
possible MUAP classifications. The SUP classifier then uses statistical
utility maximization (48) to identify MUAP classifications that it
deems to be definitely supported by the kth candidate data ��k.
Denoting the template of the ith MUAPT by the vector s�i, the SUP
classifier estimates the likelihood of the ith MUAPT to be supported
by the kth candidate data as:

P̂k,i � k,i��1 � ek,i/��� k�2�

where k, i

� ��k, i for 0 � �k, i � 1
1/�k, i for �k, i � 1 and �k, i minimizes ek, i � ��̂k � �k, is�i�2

0 for �k, i � 0

(7)

If P̂k,j � i
max P̂k,j and P̂k,j is above a threshold, the SUP classifier

subtracts s�j from ��k and iteratively repeats this process. If there have
been m subtractions in �� , the SUP classifier also adjusts the corre-
sponding likelihood values to compensate for subtraction noise by
multiplying them with (�i)m where �i is a statistic for the amplitude of
the ith MUAPT relative to the maximum-amplitude MUAPT. Because
multiple likelihood values may be calculated for each MUAPT, the
SUP classifier uses the maximum value among them when using
utility maximization to identify the MUAP classifications that it
deems to be definitely supported by the data, ��k.

Accuracy criterion. When one proposes to decompose a signal
whose composition is not known a priori, it is incumbent on the
proponent to prove that the decomposition is performed accurately.
One obvious approach for proving accuracy would be to construct
mathematically a signal of known components (MUAPTs) and then
proceed to decompose the synthesized signal into the constituent
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action potentials and check the veracity of the outcome. Two decades
ago, Mambrito and De Luca (30) showed that, if the shapes of the
action potentials remain invariant throughout the contraction, this
approach is not sufficiently challenging, even when white noise
having amplitude 40% of the average amplitude of the action poten-
tials was added to the signal. The challenges presented by real signals
and identified in previous sections represent important complexities
that must be dealt with. In addition, the algorithms must be able to
cope with other unforeseen signal components that are occasionally
presented by real data due to abrupt displacements of the sensor with
respect to the source of the action potentials. Consequently, we used
the two-source technique (30) to establish the accuracy of PD II signal
decompositions, as was originally done for PD I in 1984.

Two quadrifilar needle sensors were inserted �1 cm into the
tibialis anterior muscle and 1 cm apart. The subject had no known
neurological disorders. (The subject read and signed an informed
consent form approved by the Institutional Review Board of Boston
University.) It was expected that some of the motor units would
contribute signals to both sensors and others to only one sensor,
depending on the proximity of the muscle fibers to the separate
sensors. The EMG signal from each sensor was automatically decom-
posed via PD II and then independently further processed with the
assistance of an interactive editor. As in the case of PD I, it was found
that a subset of the MUAPTs in the two decompositions had firing
times in lock step with each other. The precise coincidence of 97.6%
of action potentials in those trains from the two signals proves that PD
II accurately decomposes both signals since the probability that PD II
makes exactly the same errors in both signals is extremely small.

The establishment of the accuracy of interactively edited PD II
decomposition results paves the way for using them as “benchmarks”
for assessing the accuracy of the fully automatic PD II decomposi-
tions. When a fully automatic decomposition algorithm produces its
estimates for the firing times of a MUAPT, two types of errors can
occur with respect to the benchmark: false negatives and false posi-
tives. A false negative occurs when the algorithm fails to find a
particular MUAPT firing in a segment indicated by the benchmark. A
false positive occurs when the algorithm declares a firing to have
occurred in a segment where the benchmark indicates that no firing of
that MUAPT actually took place. The accuracy of the algorithm on the
ith MUAPT [A(i)] is defined in this paper as:

A�i� �
NFP�i� � w1NFN�i� � w2NFP�i�

NFIR�i�
� 100% (8)

where NFIR(i), NFN(i) , and NFP(i) are the number of firings, false
negatives, and false positives for the ith MUAPT and weights (w1 and
w2) that may be assigned values other than unity as required for the
evaluation.

The accuracy numbers for automatic decomposition algorithms in
the remainder of this paper were computed on the basis of previous
work (8). The benchmarks were set via interactive editing of the
decomposition results produced by the automatic signal decomposi-
tion algorithms. The weights (w1 and w2) were both set to unity. The
decomposition accuracy of any multi-MUAPT contraction was com-
puted as the average of the accuracies with respect to each individual
MUAPT. The rationale behind this is that each MUAPT in the
decomposition has equal importance regardless of the number of
firings within it.

RESULTS

The hallmark of PD II’s design is reflected in its capacity to
automatically produce under realistic conditions indwelling
EMG signal decompositions that do not require extensive
interactive editing to assure 100% accuracy. Realistic condi-
tions include contractions ranging from those that are barely
perceivable to those that approach maximum voluntary con-

traction (MVC) levels. These in turn give rise to phenomena
such as complex MUAP superpositions, MUAPs with rela-
tively low amplitudes and/or multimodal shapes, rapid MUAP
shape changes that are either continuous or erratic, and MUAP
firing rates that change either continuously or erratically. On a
database of six realistic indwelling EMG signals reflecting the
entire range of these conditions, PD II was experimentally
found to automatically decompose an average of 9.5 MUAPTs
per signal with an average accuracy of 86.0%. This is in
contrast to PD I, which on the same database decomposed an
average of 7.5 MUAPTs per signal with an average accuracy of
65.2%. All of the MUAPTs decomposed by PD I were also
successfully decomposed by PD II. The greater accuracy of PD
II on these MUAPTs means that 60% fewer errors have to be
dealt with during interactive editing to raise the accuracy level
to clinically or scientifically acceptable levels. Furthermore,
the 86% accuracy of the automatic PD II system also applies to
low-amplitude MUAPTs that are completely missed by sys-
tems such as PD I. Such MUAPTs, which suffer dispropor-
tionately from superposition with larger amplitude MUAPTs,
have thus become amenable for the first time to scientific
and/or clinical analyses.

These levels of performance are also reflective of the results
obtained in numerous other decompositions that we have
performed on indwelling EMG signals outside of the database.
Importantly, PD II was successful in decomposing the indwell-
ing EMG signal from �80% of the signals that we attempted
to decompose from a variety of contractions of the types shown
in Table 1. In this section, details of the indwelling EMG signal
database and of the fully automatic decomposition results on it
are presented.

EMG signal database. The EMG signal database that we
used for evaluating precision decomposition algorithms was
obtained from six different experiments in which subjects were
asked to perform various types of muscle contractions. (All of
the subjects read and signed an informed consent form ap-
proved by the Institutional Review Board of Boston Univer-

Table 1. Performance of PD 1 and PD II on the EMG
signal database

FDI, first dorsal interosseous; TA, tibialis anterior; VL, vastus lateralis; VM,
vastus medialis; MUAPT, motor unit action potential train.
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sity.) In each case, the three-channel indwelling EMG signal
from the quadrifilar needle sensor was sampled at 20 kHz,
using an analog anti-aliasing fourth-order Butterworth filter
with a 3-dB cutoff at 9.5 kHz. Subsequently, a 1-pole high-pass
filter with a 3-dB cutoff at 1 kHz was applied to the digital
EMG signal to keep individual action potential durations as
short as possible while retaining the information that experi-
mentally has been found to provide a sufficient discrimination
capability.

Contraction 1 in the database is that of the first dorsal
interosseous muscle. The subject carrying out the contraction
attempted to produce an isometric trapezoidal force profile
with a plateau at the 25% MVC level. However, an erratic
force profile was actually produced because of the presence of
tremor. The entire contraction lasted 23 s. The three-channel
indwelling EMG signal for this contraction was primarily
selected because the presence of tremor tends to induce erratic
firing rates in the constituent MUAPTs.

Contraction 2 in the database is that of the tibialis anterior
muscle. The subject in this case attempted and managed to
produce an isometric trapezoidal force profile with a plateau at
approximately the 45% MVC level. The entire contraction
lasted 21 s. The four-channel indwelling EMG signal for this
contraction was primarily selected because its decomposition
using the previous PD I version and interactive editing indi-
cated the presence of a MUAPT that undergoes erratic shape
changes during certain portions of the contraction.

Contraction 3 in the database is that of the vastus lateralis
(VL) muscle. The subject in this case attempted and managed
to produce an isometric trapezoidal force profile with a plateau
at approximately the 50% MVC level. The entire contraction
lasted 30 s. The three-channel indwelling EMG signal for this
contraction was primarily selected because its decomposition
using PD I and interactive editing indicated the presence of at
least eight decomposable MUAPTs, several of which are
bimodal (that is, they have satellite potentials), and thus give
rise to complex superpositions.

Contraction 4 in the database is that of the VL muscle. The
subject in this case attempted and managed to produce an
isometric trapezoidal force profile with a plateau at approxi-
mately the 50% MVC level. The entire contraction lasted 32 s.
The three-channel indwelling EMG signal for this contraction
was primarily selected because its decomposition using the
previous PD I version and interactive editing indicated the
presence of at least 10 decomposable MUAPTs whose ampli-
tudes spanned a dynamic range of 19.6 dB, the largest in our
database.

Contraction 5 in the database is that of the VL muscle. The
subject in this case attempted and managed to produce an
isometric nontrapezoidal force profile with plateaus at approx-
imately the 20% and the 50% MVC level. The entire contrac-
tion lasted 60 s. The three-channel indwelling EMG signal for
this contraction was primarily selected because of its nontrap-
ezoidal profile and because it was part of an �10-min-long
signal epoch corresponding to a series of 10 consecutive
contractions performed by the subject for a study designed to
evaluate the effects of fatigue.

Contraction 6 in the database is that of the vastus medialis
muscle. The subject in this case attempted and managed to
produce an isometric trapezoidal force profile with a plateau at
approximately the 80% MVC level. The entire contraction

lasted 22 s. The four-channel indwelling EMG signal for this
contraction was primarily selected because of its high force
level.

Overall accuracy comparisons on database. The average
decomposition accuracy of PD II algorithms is 86.0% over the
entire database compared with an average of 65.2% for PD I
algorithms. (Note that, for some decompositions, the accuracy
of PD I reached �80%. These decompositions, which were
further processed by an interactive editor, were used to provide
the data for our previous publications.) On our database of
challenging indwelling EMG signals, PD II’s automatic algo-
rithms yielded an improvement by a factor of 1.33 over the
decomposition accuracy of PD I’s automatic algorithms. In
Table 1, we present a comparison of decomposition accuracies
achieved by the two systems on different signals within our
database. The improvement factor for different signals ranges
from 1.19 to 1.44 with an average of 1.33. The improvement
factor of 1.19 was on a signal (contraction 4) in which the
dynamic range of decomposed MUAP amplitudes was 19.6 dB
compared with dynamic ranges of 8.0 dB (contraction 2), 11.0
dB (contraction 1), 12.5 dB (contraction 3), 13.3 dB (contrac-
tion 6), and 18.4 dB (contraction 5) with respective improve-
ment factors of 1.40, 1.34, 1.29, 1.44, and 1.30. The improve-
ment factor of 1.34 is particularly impressive for the noniso-
tonic characteristics of contraction 1.

Table 1 also indicates the processing time for each of the
contractions in our EMG signal database. The processing was
carried out on a Dell Inspiron 9300 laptop with a 2-GHz
Pentium M processor and with 512 megabytes of RAM. As
shown in Table 1, the processing time per decomposed
MUAPT is of the same order as the contraction time.

Table 2 shows the accuracy values attained after the final
application of each of the three PD II classifiers. The MAP
classifier in PD II is on average found to produce an accuracy
of 63.0% on this database. This is lower than the accuracy
achieved via PD I (which has its own version of MAP classi-
fier) because the MAP classifier in PD II includes symbol
processing for rejecting weak classifications. Subsequent clas-
sifiers replace those weak classifications by more accurate
classifications. First, the INT classifier takes the average accu-
racy to 68.2%. Second, the SUP classifier boosts the average
accuracy to 86.0%.

Accurate resolution of complex superpositions. The occur-
rence of complex superpositions among the MUAPs of differ-
ent motor units is among the foremost challenges of any EMG
decomposition system. The pervasiveness of such superposi-

Table 2. Contribution of PD II classifiers to performance
on the EMG signal database

Contraction No.
MAP Algorithm

Accuracy
INT Algorithm

Accuracy
SUP Algorithm

Accuracy

1 45.6% 52.9% 75.6%
2 61.7% 69.5% 90.1%
3 75.3% 75.9% 96.6%
4 74.1% 75.2% 88.3%
5 60.1% 71.5% 77.6%
6 61.4% 63.9% 88.0%

Average 63.0% 68.2% 86.0%

MAP, maximum a posteriori probability; INT, integration; SUP, superpo-
sition.
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tion phenomena in our database of indwelling EMG signals is
illustrated in Fig. 4. It is seen that, although 44.9% of the firings
of the decomposable motor units occur by themselves, the remain-
der are in superposition with at least one other MUAP. More
specifically, 25.7% of the decomposable MUAPs occur in super-
position pairs, 14.8% in superposition triplets, 7.8% in super-
position quadruplets, 4.3% in superposition quintuplets, and
2.5% in superpositions of sextuplets or more MUAPs. The
difficulty in resolving even relatively simple cases of superpo-
sition can be appreciated via the example waveforms shown in
Fig. 5A. These three waveforms represent 0.3 s of three
channels of indwelling EMG data collected near the beginning
of a contraction. The detection times of MUAPs and the
classification of their corresponding motor units, numbered 1
through 8, were determined via PD II, and they are illustrated
in Fig. 5B. The contraction level rises from 18.75% MVC at
the beginning of these data to 21.55% MVC at the end. Two
motor units (7 and 8) are recruited during this interval. Motor
units 1 and 5 are a superimposed pair at �4.93 s, and motor
units 2, 4, and 8 are a superimposed triplet at 5.06 s. The
occurrence of the MUAP of motor unit 2 within the triplet is
particularly difficult to visually ascertain from the waveforms.
However, its presence can be confirmed via subtraction of the
motor unit templates from the data in question. PD II is found
to be highly successful in not only resolving such superposi-
tions but also significantly more complicated ones that arise at
higher %MVC levels. For example, consider the case of
contraction 3 in our database where PD II yielded the highest
accuracy level of 96.6%. Figure 6 shows results for 12 motor
units as they were decomposed by PD II without any interac-
tive editing by a human operator. Four of the decomposed
MUAPTS (solid arrows in Fig. 6) were not decomposable via
PD I. Superimposed on Fig. 6 is an experimentally measured
“force profile” of the contraction that the subject performed
during data acquisition. In performing the decomposition of
Fig. 6, PD II had to successfully deal with a variety of complex
superpositions among the MUAPs of the 12 decomposed motor
units. In one case, the SUP classifier of PD II succeeded in
accurately decomposing (without the need of any interactive
editing by a human operator) a superposition of seven MUAPs.
As shown for channel 0 in Fig. 7, the SUP classifier decom-
posed the three-channel indwelling EMG signal segment into
seven MUAP components. The channel 0 residue obtained
when the seven MUAPs are subtracted from the original
segment is shown in Fig. 7A; all three channels (0, 1, and 2) of
the original segment are shown in Fig. 7B.

Accurate decomposition of multiphase MUAPs. It can also
be observed from Fig. 7 that several of the MUAPs involved in
contraction 3 have a multiphase characteristic. This is a testa-
ment to the ability of the SUP classifier in PD II to handle the
complexities associated with multiphase MUAPs.

Accurate determination of recruitment times. A critical ele-
ment in carrying out indwelling EMG signal decomposition is
the capability of accurately determining the recruitment times
of each of the motor units. The bar plot for contraction 3 in Fig.
6 has been verified to reflect the actual recruitment times (via
an interactive editor) for 9 of the 12 motor units. In the case of
motor units 10-12, the recruitment times indicated by the bar
plot are off from the actual recruitment times by 1 inter pulse
interval IPI each (an error of n IPI’s means the first n firings
were missed by the decomposition program). In general, as
indicated in Fig. 8, we find that 38 of the 57 MUAPTs
decomposed via PD II on our indwelling EMG database had no
error in their recruitment times; another 10 MUAPTs had a
recruitment error of just 1 IPI each. In other words, 84.2% of
the MUAPTs had their recruitment times determined to within
an accuracy of 1 IPI. This is particularly significant because the
recruitment of motor units occurs when the contraction level is
being increased. During such transitions, the indwelling EMG
sensor is likely to experience displacement relative to the
muscle fibers, thus giving rise to shape changes in the detected
action potentials.

Fig. 4. Percentage of MUAPS in our indwelling EMG database that are
involved in no superposition (singles) or in superpositions involving 2 MUAPs
each (pairs), 3 MUAPs each (triplets), and so forth.

Fig. 5. A: 3 channels (ch) of a short portion (0.3 s) of an indwelling EMG
signal collected near the beginning of a contraction whose level rises from
18.75% to 21.55% MVC. B: firing times of 8 of the motor units extracted by
fully automatic PD II from the same short portion of indwelling EMG signal.
PD II successfully identified the recruitment of motor units 7 and 8 over this
portion of the signal. It also successfully resolved the superposition triplet
involving motor units 8, 4, and 2 �0.26 s into the signal portion.

Fig. 6. Bar plot showing the firing times of 12 MUAPTs that were decom-
posed by fully automatic PD II when applied to the 30-s indwelling EMG
signal for contraction 3 (from the vastus lateralis muscle) in our database. The
MUAPTs indicated by arrows were not decomposable via PD I.
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Accuracy in tracking shape changes. The ability of PD II to
track shape changes is in part due to the adaptive nature of its
MAP classifier and in part due to the INT classifier. In Fig. 9,
we show the shape changes that take place in the three-channel
action potentials of motor unit 1 of contraction 3 during a
portion of its recruitment period. The MAP classifier of PD II
easily tracked the relatively smooth changes. In Fig. 10, we
show the shape changes that take place in the three-channel
action potentials of motor unit 6 of contraction 3 during a
portion of its recruitment period. In this case, there is an
interval of �0.5 s during which the action potentials experi-
ence an abrupt change in shape (in the region highlighted by
the use of thicker lines). In this case, the MAP classifier
declares the action potentials within the 0.5-s period to be the
firings of a new motor unit. However, the INT classifier of PD
II is able to associate them back to motor unit 6.

Accuracy on low-amplitude MUAPs. Another important fea-
ture of PD II is its ability to resolve superpositions among

motor units that have significant differences in amplitude. In
Fig. 11A, we show a successful decomposition of an indwelling
EMG signal segment from contraction 5 as a superposition of
two action potentials with disparate amplitudes. Similar super-
positions are also resolved across our indwelling EMG data-
base, where the dynamic range of amplitudes (see Fig. 11B) of
the various action potentials decomposed by PD II can be as
high as 19.6 dB.

Accuracy in tracking firing-rate perturbations. Figure 12
provides an illustration of the ability of PD II to track highly
variable IPIs in a situation where the subject from whom the
indwelling EMG signal was detected exhibits significant
tremor. Figure 12A shows an abstracted bar plot for contrac-
tion 1 and highlights a section that is the focus of the rest of the
figure. Figure 12B shows all the bars for the highlighted
section. The 14 bars pointed to by the solid triangles were
produced by the SUP classifier as add-ons to the preexisting
bars produced by the INT classifier. It is apparent that the SUP
classifier made a significant difference in this section yet

Fig. 8. Number of MUAPTs (out of a total of 57 in our indwelling EMG
database) whose recruitment times are determined by fully automatic PD II to
within a specified number (on the horizontal axis) of interpulse intervals for the
corresponding motor unit.

Fig. 9. Smoothly evolving shape of the MUAPs of motor unit 1 in contraction
3 over its first 10 s.

Fig. 7. PD II automatically decomposed the 14-ms SEGMENT waveform into
7 MUAP waveforms. A: channel 0 of the SEGMENT, channel 0 of each of the
7 MUAP templates, and channel 0 of the RESIDUE waveform resulting from
subtraction of the 7 MUAP waveforms from the SEGMENT waveform. B: all
3 channels of the SEGMENT. In A and B, each number on the SEGMENT
waveform indicates the relative position of the major peak of the correspond-
ing MUAP waveform.

Fig. 10. Abrupt shape change in the MUAPs of motor unit 6 of contraction 3
from �2.2 to �2.7 s and highlighted via bolder lines.
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produced no false positives despite variations in IPI that
correlate well with the superimposed force profile.

Accuracy at high MVC levels. Yet another attribute of PD II
is its ability to perform well even at high %MVC levels. For
example, in the case of contraction 6, the subject achieved 80%
MVC level for almost 10 s. The indwelling EMG signal in such
cases is characterized by the presence of a greater number of
active motor units. PD II was able in this case to decompose 11
motor units (as compared with 5 motor units in the case of PD
I) quite accurately because of its enhanced capacity for resolv-
ing complex superpositions. The bar plot for contraction 6 is
shown in Fig. 13.

Accuracy for multicontraction signal epochs. Contraction 5
in our indwelling EMG database was part of a multicontraction
signal epoch that lasted �11 min. Although we included just
one of those contractions in our indwelling EMG database, the
other contractions were also decomposed via PD II with a
similar degree of accuracy. Also, PD II is generally able to
track the same motor unit when it appears in different epochs.

In fact, it is able to do so for more motor units than PD I
because of its greater accuracy.

DISCUSSION

The PD II system reported in this paper, in many respects,
satisfies most of the objectives that define a pragmatic and
useful decomposition system. In its present form, and with the
assistance of an interactive editor, the system can be usefully
applied to decompose most indwelling EMG signals from
attempted isometric contractions that are apt to be employed
when studying problems in the field of motor control. How-
ever, for the system to be employed in the clinical environ-
ment, it will be necessary to improve the typical accuracy in
the automatic mode from 86% to at least 96%. The reason for
this level of accuracy may be seen in Fig. 1. At this level, the
need for an interactive editor is completely eliminated, thereby
providing useful and accurate results in a matter of minutes.
The interactive editor presently imposes a level of expertise
and substantial time demands on the user, up to a few hours per
minute of signal in low accuracy cases, a condition that is not
likely to be accepted in busy clinical environments. Shortcom-
ings of PD II that presently have to be addressed via the
interactive editor fall into three major categories. First, there is
the failure of PD II in some instances to differentiate between
similarly shaped action potentials of two different motor units
when either is involved in severe superposition with the action
potentials of other motor units. Second, there is the failure of
PD II in some instances to detect a low-amplitude action
potential because of “masking” by an action potential that is
several times higher in amplitude. Finally, there is the inability
of PD II to sometimes distinguish correctly between similarly
shaped action potentials of two different motor units when one
of them undergoes shape changes that make its action potential
much closer in shape to that of the action potential of the other
motor unit.

The present form of PD II represents a substantial improve-
ment in performance over our previous version (PD I) and that
of other recently published works (16, 34, 41, 52). In contrast
to these works, PD II does not require significant user interac-
tion to systematically identify motor unit recruitment and

Fig. 11. A: indwelling EMG signal segment from our database that was
decomposed via fully automatic PD II into 2 MUAPs for motor unit 1 (MU1;
high amplitude) and motor unit 2 (MU2; low amplitude), respectively.
B: dynamic range (in dB) of amplitudes spanned by the MUAPs decomposed
by PD II for each contraction in our EMG database.

Fig. 12. A: abstracted bar plot for contraction 1 from our indwelling EMG
database. This contraction was obtained from the first dorsal interosseous of a
cerebellar patient. B: bar plot in detail for the boxed region in A. Bars pointed
to by the solid triangles were produced as add-ons by the SUP classifier.

Fig. 13. Bar plot for the firing times obtained via fully automatic PD II on a
signal corresponding to contraction 6 (from the vastus medialis) in our
database in which a force level of 80% MVC was reached.
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derecruitment for a large set (�10) of concurrently active
motor units, to resolve superpositions of up to seven MUAPs,
to decompose signals from dramatically changing MUAP
shapes, to decompose signals from erratic force contractions,
and to decompose a large set of motor units from contraction
levels as great as 80% MVC. Furthermore, PD II has been
found to perform reliably in achieving its accuracy levels not
just on the database of indwelling EMG signals presented in
this paper but also on a large number of other indwelling EMG
signals with characteristics similar to those of the signals in our
indwelling EMG database. The reliability with which the PD II
system is able to perform automatic decompositions at impres-
sive accuracy levels is such that we did not hesitate to suc-
cessfully give a real-time demonstration of the capabilities of
an earlier version of the system in a workshop (with over 60
attendees) at the 2004 International Society of Electrophysiol-
ogy and Kinesiology Conference (Boston, MA). The present
version of the system is even more accurate and can more
reliably produce those levels of accuracy across a broad range
of indwelling EMG signals.

The foundational strength of PD II lies in its ability (pro-
vided via IPUS) to carry out knowledge-based searches for
signal-dependent operating points for its parameterized classi-
fiers. No other reported system has such a capability. Given the
complex nature of the automatic decomposition problem, it
seems inevitable to us that any practical solution would have to
possess some type of parameter-tuning capability to minimize
and ultimately eliminate the need for interactive editing of the
automatic results. Although the present version of PD II uses
parameterized classifiers built on the original MAP classifier of
PD I, there is nothing to preclude the use of other parameter-
ized classification approaches [e.g., convolutional mixtures
analysis (21), wavelet analysis (52), or genetic algorithms (16)]
within the same framework and hence to enhance the respec-
tive performance levels of those methods as well.

The main advantage of our PD II system is that it allows the
exploration of the behavior of the nervous system during a
variety of contractions, thus enabling a more fertile and more
comprehensive assessment of the motor control properties of
the motor units. Examples of such investigations where we
have used the PD II system can be found in recent publications
by Adam and De Luca (1, 2). In these two works, our group
followed the firings of motor units throughout a sequence of
muscle contractions up to exhaustion; in so doing, our group
studied for the first time the behaviors of individual motor units
throughout the full course of a fatiguing contraction. Another
application can be found in Roark et al. (42), in which our
group was able to collect and study motor unit firings from the
laryngeal muscles. In this study, the data collection was diffi-
cult and tenuous, yielding a limited number of data records. It
was important that the decomposition succeed in decomposing
the available data because of the limited access to the patients
that were studied and the complexity of the recording tech-
nique. A similarly challenging decomposition was successfully
accomplished in cerebellar stroke patients who were unable to
provide well-behaved contraction in the first dorsal interosse-
ous muscle when tested. In a recent paper by Sauvage et al.
(43), our group decomposed the indwelling EMG signal and
provided insight regarding the role of the cerebellum in the
control of motor units.
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