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Objective: Automatic decomposition of surface electromyographic (sEMG) signals into their constituent
motor unit action potential trains (MUAPTs).
Methods: A small five-pin sensor provides four channels of sEMG signals that are in turn processed by an
enhanced artificial intelligence algorithm evolved from a previous proof-of-principle. We tested the tech-
nology on sEMG signals from five muscles contracting isometrically at force levels ranging up to 100% of
their maximal level, including those that were covered with more than 1.5 cm of adipose tissue. Decom-
position accuracy was measured by a new method wherein a signal is first decomposed and then recon-
structed and the accuracy is measured by comparison. Results were confirmed by the more established
two-source method.
Results: The number of MUAPTs decomposed varied among muscles and force levels and mostly ranged
from 20 to 30, and occasionally up to 40. The accuracy of all the firings of the MUAPTs was on average
92.5%, at times reaching 97%.
Conclusions: Reported technology can reliably perform high-yield decomposition of sEMG signals for iso-
metric contractions up to maximal force levels.
Significance: The small sensor size and the high yield and accuracy of the decomposition should render
this technology useful for motor control studies and clinical investigations.
� 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.
1. Introduction of sensor or placement site; there is no risk of infection or dis-
Researchers in the field of motor control and clinicians managing
patients with motor disorders wanting to observe the firing behavior
of motor units have been limited to using cumbersome technology
having unquantifiable accuracy. In this study, we report a system
that estimates the firing patterns of a significant fraction of the active
motor units in a muscle during a contraction. The system is a matu-
ration of the proof-of-principle reported by De Luca et al. (2006). The
technology, an advancement of the original Precision Decomposi-
tion approach of LeFever and De Luca (1982), decomposes the
surface electromyographic (sEMG) signal that is detected non-
invasively from the surface of the skin. These sEMG signals have been
successfully decomposed for contraction forces ranging from mini-
mal to 100% of Maximum Voluntary Contraction (MVC) levels.

The use of the sEMG signal offers several advantages over the
indwelling EMG signals acquired with needle or wire sensors.
There is no need for clinical preparations such as sterilization
f Clinical Neurophysiology. Publish

Street, 6th Floor, Boston MA
ease transmission; there is no potential for muscle tissue dam-
age; sensitive or dangerous areas such as eyelids, lips, and
tongue need not be excluded. Another advantage is that the
sEMG signal contains contributions from a greater number of
motor units, thus providing a richer expression of the motor unit
behavior during a contraction.

Decomposition of sEMG signals into time-frequency compo-
nents (Englehart et al., 1999), wavelet components (Englehart
et al., 2001) and degrees-of-freedom force functions (Jiang et al.,
2009) has been very successful for applications in prosthesis con-
trol. However, sEMG signal decomposition into motor unit action
potential trains (MUAPTs) has till now by and large proved to be
a difficult problem (Merletti and Parker, 2004), although different
methods have been proposed and investigated by us (De Luca
et al., 2006) and others, including Zhou et al. (2006) and Holobar
and Zazula (2007). Such efforts have been mainly inspired by the
high degree of success (LeFever and De Luca, 1982; Stashuk,
2001; McGill et al., 2005; Nawab et al., 2008; Erim and Lin,
2008) that has been achieved in the decomposition of indwelling
EMG signals, even though they are generally less challenging to
decompose than sEMG signals.
ed by Elsevier Ireland Ltd. All rights reserved.
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2. Methods

The system of this report consists of a 5-pin surface sensor, a
signal acquisition system, and a signal decomposition algorithm.
In this section, we describe each of these components as well as
the rationale for the experiments that were conducted to evaluate
the performance of the system. Note that these experiments were
performed for the sole purpose of testing the technology and not
for performing comprehensive physiological investigations.
2.1. The sEMG sensor

The 5-pin surface sensor of this report is shown in Fig. 1A at-
tached above the FDI muscle. The sensor consists of five cylindrical
pins (0.5 mm diameter each) with blunted ends that protrude from
the housing so that when pressed against the skin they make a sur-
face indentation, but do not puncture the skin. As illustrated in
Fig. 1B, the pins are placed at the center and at the corners of a
5 � 5-mm square. Pair wise subtraction of voltages at the five
detection surfaces is used to derive multi-channel sEMG signals.
The subtraction ensures that common-mode signals (such as those
due to external electrical sources) undergo a high degree of cancel-
lation. As discussed in LeFever and De Luca (1982), the utilization
of multi-channel EMG signals (typically 3 or 4 channels) improves
the ability of decomposition systems to discriminate the motor
Fig. 1. (A) The five-pin surface EMG sensor attached above the First Dorsal
Interosseous muscle in the hand. (B) Top and bottom views of the sensor. The four
pins on the corner of a square are spaced 3.6 mm apart.
unit action potential (MUAP) of one motor unit from that of
another.

2.2. EMG signal acquisition

The sEMG sensor and a reference electrode are connected to
four channels of a Bagnoli sEMG system from Delsys Inc. We typi-
cally select four channels which have the greatest signal to noise
ratio. The analog sEMG channels are high-pass filtered with a cut-
off frequency of 20 Hz (24 dB/octave roll-off) and lowpass filtered
with a cutoff frequency of 1750 Hz (24 dB/octave roll-off). Each
channel is then over-sampled at 20 KHz (to avoid introducing sig-
nificant phase skew across channels) and the resulting digital data
are stored on a computer for decomposition processing as well as
for post-decomposition analysis of action potential morphology.
When the decomposition is initiated, the digital sEMG signals are
digitally filtered with a high-pass filter having a cutoff frequency
of 50 Hz (24 dB/octave roll-off). This latter filtering stage removes
the long tails of the action potentials, thus reducing the incidence
of superposition between the action potentials and making the
decomposition task relatively less challenging.

2.3. Data collection

Eight neurologically healthy subjects (4 males and 4 females)
having age ranging from 21 to 41 years (26.9 ± 7.8 yrs) volunteered
for the data collection experiments. All read, understood and
signed an Informed Consent form provided by the Institutional Re-
view Board of Boston University. Measurements were made on the
First Dorsal Interosseous (FDI) muscle, the Vastus Lateralis (VL)
muscle, the Tibialis Anterior (TA) muscle, the Biceps Brachialis
(BB) muscle, and the Biceps Femoris (BF) muscle. These muscles
were chosen because they are different in sizes, have different
recruitment and firing rate strategies (De Luca et al., 1982,1996;
Adam and De Luca, 2005), and are covered by different amount
of adipose tissue. Thus, the sEMG signal from these muscles would
provide different challenges to the system.

The subjects were requested to perform constant-force isomet-
ric contractions by tracking a trapezoidal force paradigm presented
on a screen. The trapezoid increased from zero to the target force in
2–5 s, remained constant for 5–15 s, and decreased to zero in 2–5 s.
The constant-force level varied from 20% to 100% MVC. The force
level was measured by placing the appropriate limb in an appara-
tus that restrained the movement of the limb and was instru-
mented with a high-stiffness force gauge (model MB-250;
Interface, Scottsdale, AZ). The MVC was taken as the maximal value
of three sequential efforts at generating the maximal force level.
The subjects were asked to contract as forcefully as possible and
hold the contraction for 2–3 s. Each attempt was followed with a
rest period of 5 min.

2.4. Signal decomposition algorithm

The signal decomposition algorithm begins by extracting action
potential ‘‘templates” of as many MUAPTs as practically possible
from the input sEMG signal, and then it searches for signal regions
where the extracted templates are in superposition with each
other or with unidentified action potentials. The algorithm takes
both constructive and destructive interference effects1 into account
when analyzing such superpositions and it requires that the uniden-
tified action potentials account for less than 25% of the signal energy
at the firing locations of the decomposed MUAPTs. The only assump-
1 The extreme of completely destructive interference is not considered as a
possibility by the algorithm because it is essentially impossible to detect. It is
however, also a rare (although not impossible) occurrence in the sEMG signal.
,
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tion made about inter-pulse intervals during this process is that they
be less than 0.35 s.

The algorithm is designed so as to typically decompose 20–30
MUAPTs per contraction. In steady state, such constituents collec-
tively contribute on the order of 300–600 MUAP firings per second.
After high-pass filtering to eliminate non-MUAP signal sources and
some low-frequency components of the MUAPs, each MUAP has a
main lobe and significant side lobes that together are on the order
of 5–10 ms long. It follows that in steady state each decomposed
MUAP instance typically overlaps to some degree with at least
3–6 other decomposed MUAP instances, and at times more. Also,
there is additional superposition with MUAP firings of the lower-
amplitude non-decomposed MUAP constituents. Because of such
a high degree of MUAP superposition and because the MUAP shape
of each MUAPT always has temporal variability, the decomposition
task is very challenging.

Our decomposition algorithm was designed utilizing well-
established technology from the knowledge-based systems sub-
field (Leondes, 2000) of artificial intelligence. Knowledge based
algorithms have been widely used in physiological signal applica-
tions such as ECG interpretation (Kundu et al., 2000) and EEG sei-
zure detection (Aarabi et al., 2007) and in non-physiological signal
applications such as remote sensing (Bárdossy and Samaniego-
Eguiguren, 2002) and radar signal classification (Gini and Ran-
gaswamy, 2008). They are generally designed to operate in real life
situations and thus are characterized by their use of a knowledge
base of empirically sustainable ‘‘rules” (Ligeza, 2006) and ‘‘cases”
(Leake, 2000) that can continually and conveniently be added to,
removed, or modified for improved performance. The updating of
rules and cases is akin to the updating of the weights of a neural
network in response to experience with new data. However, in
both cases, the updating takes place in the context of an existing
internal structure. The rules, cases, or weights may change as the
system encounters new types of situations, but this internal struc-
ture remains invariant.

The reported system’s invariant internal structure builds upon
the Precision Decomposition (PD) approach originated by Lefever
and De Luca (1982). We have previously utilized the PD approach
in conjunction with the Integrated Processing and Understanding
(IPUS) concept (Lesser et al., 1995) from artificial intelligence to
develop a decomposition algorithm for indwelling EMG signals
(Nawab et al., 2002, 2004, and Nawab et al., 2006). The IPUS frame-
work basically allows rules to be conveniently encoded (see Wino-
Fig. 2. Block diagram of the sEMG signal decomposition algorithm. The PD-IPUS stage cr
IGAT stage performs MUAPT discrimination at the output of a shape-matching procedu
grad and Nawab (1995) for details) in support of the mathematical
structure of an algorithm in order to permit run-time modification
of its behavior in response to different conditions found in the in-
put signal. For example, in the context of the PD approach, the IPUS
rules help to decide on a signal-by-signal basis what amplitude
threshold to use in detecting action potentials so that their shapes
can be resolved sufficiently for distinguishing them from action
potentials of other MUAPTs. A variant of the PD-IPUS algorithm
was used in a proof-of-principle demonstration by De Luca et al.
(2006) (with improvements reported by Nawab et al. (2008),
Chang et al. (2008) and Nawab et al. (2009)) that an artificial intel-
ligence approach can be used to obtain the MUAPT constituents of
the complex sEMG signal. While the PD-IPUS algorithm of De Luca
et al. (2006) is typically able to extract templates for 20–30
MUAPTs from the sEMG signal, it is unable to adequately resolve
their complex superpositions except in the case of 4–8 MUAPTs
of highest amplitude. The signal decomposition algorithm of this
report represents the result of introducing new mechanisms that
help to resolve complex superpositions for a larger number of
the MUAPTs identified by the original PD-IPUS algorithm.

As indicated in the block diagram of Fig. 2, the sEMG signal
decomposition algorithm of this report begins with an initial PD-
IPUS stage to identify as many templates for the various MUAP
shapes as possible. It then follows with an ‘‘iterative generate
and test” stage (PD-IGAT) of artificial intelligence to identify the
templates whose presence is objectively indicated in any of the
complex superpositions within the sEMG signal. More details of
the PD-IPUS and PD-IGAT stages are described next.
2.5. PD-IPUS stage

The PD-IPUS stage of the new algorithm is, for the most part, the
same as the algorithm reported by De Luca et al. (2006). It is a com-
bination of three basic processes: MUAP template creation, MUAP
template matching, and MUAP template updating. The creation of
MUAP templates involves the extraction of signal shapes in the
vicinity of data peaks in the sEMG signal. The matching of MUAP
templates against the remaining sEMG signal takes place through
a Maximum A-posteriori Probability classifier. Updating of MUAP
templates takes place through a recursive weighting process
(Nawab et al., 2002) whenever the matching procedure detects a
new instance of a previously detected MUAP.
eates, matches, and updates motor unit action potential (MUAP) templates. The PD-
re applied to the sEMG signal.



Table 1
Summary of results from the application of the reported sEMG decomposition
algorithm to a database of 22 real 4-channel sEMG signals. The number of MUAPTs
decomposed by the algorithm on this database ranges from 16 to 40. The number of
MUAPs found per second ranges from 231 to 742, and processing time per MU per
second ranges from 2.3 to 4.6 s. Muscle abbreviations used: FDI, First Doral
Interosseous, TA, Tibialis Anterior, VL, Vastus Lateralis, BB, Biceps Brachialis and BF,
Biceps emoris.
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2.6. IGAT stage

The PD-IGAT stage begins by applying a template-matching
procedure (Chang et al., 2008) to the sEMG signal for identifying
signal locations where the shape of the sEMG signal and the shape
of a MUAPT template from the PD-IPUS stage exhibit a correlation
above an adaptive threshold of at least 20% with each other2. The
PD-IGAT stage then performs iterative MUAPT discrimination analy-
sis (Nawab et al., 2009, Chang et al., 2008) at each of those signal
locations to determine which, if any, of the multiple matching tem-
plates have actually contributed there. A brute force solution would
be to try all possible combinations of the matching templates so as to
determine which combination models the sEMG signal in that vicin-
ity with the greatest accuracy. Since each location is typically asso-
ciated with the templates of on the order of five different MUAPTs,
such a brute force approach becomes computationally prohibitive.
Instead, we utilize a process by which template combinations of
greater likelihood are considered first and the search is stopped if
an acceptable3 level of signal modeling accuracy is attained by 2 of
the combinations or if the 10 most likely combinations have been
considered and fewer than 2 of them have been deemed acceptable.
The likelihood of a template combination at a particular signal loca-
tion is determined on the basis of (1) the degree to which each of the
combination’s constituent templates matches the signal shape in the
vicinity of that location and (2) the degree to which the location is
consistent with a locally estimated firing rate for the corresponding
MUAPT. More formally, the process of likelihood assignment for the
various combinations is carried out by invoking a statistical utility
maximization procedure as described by Nawab et al. (2004). Once
the template combinations (and their acceptable competitors at
some of the locations) have been selected for the entire sEMG signal,
the resulting MUAPTs are required to meet the following criteria:

� The mean energy of the residual signal (the difference between
the original signal and all the identified MUAPTs) at the firing
locations of any MUAPT must be a relatively small fraction
(a 6 0.25) of the mean energy in all the MUAPT constituents
at those locations.
� The mean inter-pulse interval of any MUAPT during its active

periods must not be greater than s seconds. We use s P 0.35 s
in our current implementation of the algorithm. It should be
noted that in the current implementation of the algorithm if a
MUAPT does not have any firings for at least half a second, it
is considered to be inactive until it next begins firing again with
an inter-pulse interval of at least 0.35 s.

If competing answers for any MUAPT satisfy both of the above
test criteria, the answer with the smallest coefficient of variation
for its inter-pulse intervals is selected.4

The final ‘‘answer refinement” phase of the PD-IGAT stage is de-
signed to adjust or re-position the firing locations of the selected
MUAPT answers by taking greater account of their mutual super-
position effects. A ‘‘peel off and match” strategy is used in which
the action potential templates of the answer MUAPTs are consid-
s7.37448208s0261

s1.452312001s5171

s7.30948252s4281

s1.47031205s7291

s3.27459357s5202

s2.44340304s5112

s5.32470404s5122

BB

BF

TA

2 Signal to template correlations as low as 20% are deemed to be possible matches
because the sEMG signal is expected to contain excessive amounts of inter-MUAPT
superposition.

3 The modeling accuracy of a template combination at a signal location is
considered acceptable if subtracting the template combination from the signa
location reduces the signal energy at that location by an adaptive threshold that is a
least 50% of the net energy in the template combination.

4 The rationale for this phase of PD-IGAT is that random placements of false
positives and/or false negatives amongst the firings of a MUAPT always tend to
increase MUAPT inter-pulse irregularity. The true firings would therefore be expected
to cause a minimum in inter-pulse irregularity.
l
t

ered in order of MUAP size, from largest to smallest. When reposi-
tioning a particular firing time of a given MUAPT, this strategy sub-
tracts (‘‘peels off”) the action potential templates of all the larger
MUAPTs from their previously re-positioned locations in the sEMG
signal and then cross-correlates (‘‘matches”) the result with the gi-
ven MUAPT’s action potential template. The firing time of the given
MUAPT is then re-positioned to the location of the nearest peak in
the resulting cross-correlation function.
3. Results

The sEMG signal decomposition algorithm was systematically
tested on a database of 22 sEMG signals acquired from five muscles
contracting at levels ranging from 20% to 100% MVC. A detailed
assessment of algorithm performance on our signal database is
summarized in Table 1. For each numbered element of the data-
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base, Table 1 lists various attributes of the corresponding muscle
contraction (muscle type, peak force level, duration, and force pro-
file generated). It also provides various metrics on how well our
algorithm performed in decomposing the signal. The algorithm is
found to produce 16–40 MUAPTs per contraction while detecting
(at peak force) 200–750 action potentials per second. Its processing
speed on a Personal Computer was found to be on the order of 3 s
for each second of any decomposed MUAPT.

Let us now examine more detailed results of sEMG signal
decomposition obtained on the experimental database of 20 sEMG
signals.

3.1. MUAPT inter-pulse intervals

The inter-pulse intervals of 30 MUAPTs obtained by decompos-
ing an sEMG signal (signal # 1 of Table 1) from a 50% MVC of the
FDI muscle are shown in Fig. 3. This type of a plot is referred to
as a ‘‘dot” plot in which each MUAPT’s inter-pulse intervals are rep-
resented by a series of dots. The horizontal and vertical coordinates
of each dot, respectively, represent a specific firing time and the
time elapsed since the immediately preceding firing of the same
motor unit. Superimposed on the dot plot is a solid line that repre-
sents the force profile generated during the muscle contraction.
The vertical axis on the left represents the recruitment order of
MUAPT constituents while the vertical axis on the right represents
force level as a percentage of MVC. The behavior of the inter-pulse
intervals is consistent with that observed in data obtained from our
previous decomposition methods (De Luca et al., 1982, 1996; De
Luca and Erim, 2002) decomposition procedures of other research-
ers (McGill et al., 2005; Stashuk, 1999), and that observed by visual
inspection (Tanji and Kato, 1973; Person, 1974). For example, it can
be seen from Fig. 3 that earlier recruited motor units typically have
a smaller mean inter-pulse interval than later recruited motor
units, corresponding to the increasingly lower firing rates of later
0 5 10 15
Tim

Fig. 3. Dot plots of inter-pulse intervals of 30 MUAPTs obtained by decomposing signal #
dot height is 200 ms. The sEMG signal was collected during a 50% MVC of the FDI muscle
the motor units. Right vertical axis indicates %MVC level of force profile superimposed
recruited motor units. Later recruited motor units tend to have
greater variance in inter-pulse interval than earlier recruited motor
units, as reported by Tracy et al. (2005) and Contessa et al. (2009).
Also, the dots (inter-pulse intervals) of each MUAPT decrease in
height as the force increases and fluctuate about an average value
when the force of the trapezoidal profile is constant. The recruit-
ment order of motor units is highly correlated with the de-recruit-
ment order (De Luca et al., 1982; Person, 1974).
3.2. Time sequence of MUAPT firing times

The firing times of each MUAPT are commonly plotted in the
form of vertical ‘‘bars.” Such a bar plot is shown in Fig. 4 for 28
MUAPTs of a 0.5 s interval of an sEMG signal (signal #5 in Table 1)
from the FDI Muscle at 50% MVC. The entire waveform for one
channel of the contraction is shown at the top of Fig. 4 along with
a time-expanded plot of the highlighted 0.5 s interval. The left ver-
tical axis on the bar plot represents the recruitment order of
MUAPTs and the right vertical axis represents force level as a per-
centage of MVC. Inspection of the bar plot in Fig. 4 confirms the
now generally accepted observation that later recruited motor
units tend to have greater inter-pulse intervals, corresponding to
lower mean firing rates. Finally, in Fig. 5, we show a complete
bar plot along with a corresponding force profile for a sEMG signal
(signal # 13 in Table 1) acquired at 100% MVC from the VL muscle.
The initial recruitment period of such contractions is extremely
short (less than 1 sec in this case) because the subject is attempting
to achieve 100% MVC. This makes it difficult for the algorithm to
precisely locate the recruitment times, particularly for the later re-
cruited motor units. In this particular instance, the recruitment
times appear to conform to what one would expect for the super-
imposed force profile in Fig. 5, including the second recruitment of
motor unit 15.
20 25 30
e (s)

1 of Table 1. The Inter-pulse-interval is plotted vertically. The vertical limit on each
. The numbers left of the vertical axis indicate the number and recruitment order of
on the dot plot.



 

Fig. 4. The top trace represents one channel of the sEMG signal taken from signal
#5 in Table 1. It was obtained from a 50% MVC of the First Dorsal Interosseous
muscle. The second is an expanded segment (0.5 s) of the raw signal. The bar raster
contains the firing times of 28 motor units, numbered according to their
recruitment order.

2 4 6 8 10 12
Time (s)

Fig. 5. Bar plot with force profile for signal # 13 in Table 1 obtained from a 100%
MVC of the Vastus Lateralis muscle. The muscle was covered with 14 mm of adipose
tissue. Note that the last detected motor unit was recruited at approximately 80%
MVC. Also, motor unit 15 is re-recruited when the force rises up for a second time.
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3.3. Residual signal

Shown in Fig. 6 is the entire waveform of a single channel of
the sEMG signal (signal #2 in Table 1) acquired from the FDI
muscle of a subject performing an isometric contraction at 50%
MVC. The corresponding residual signal for the decomposition is
shown directly below the sEMG signal of Fig. 6. This residual sig-
nal was obtained by removing peaks in the signal data that match
the corresponding templates of the 21 identified MUAPTs. The
residual indicates that while our signal decomposition algorithm
has accounted for a significant number of data peaks in the signal,
there are still many data peaks (mostly of smaller amplitudes) left
unexplained by the algorithm. This is to be expected since the
algorithm is decomposing only 21 motor units while there are
considerably more motor units active in the FDI muscle during
a 50% MVC contraction. The remaining MUAPTs are not decom-
posed because of their relatively lower amplitudes at the sEMG
sensor location or because the PD-IPUS stage is not able to detect
a sufficient number of uncontaminated instances of their action
potentials.
3.4. The MUAP shapes

In Fig. 7, we show the 39 MUAP shapes estimated for a 0.5 s
interval of a sEMG signal (signal # 20 in Table 1) obtained from an-
other muscle, the BB muscle, at 75% MVC. Note that the amplitude
of the MUAPs tends to increase with increasing motor unit number,
which correspond to the order of recruitment. The amplitude of the
MUAP is indicative of a greater number of muscle fibers contribut-
ing to the action potential, or greater action potentials from muscle
fibers of greater diameter, or both. The imperfect sequential in-
crease in the amplitude of the MUAP is likely due to the uneven dis-
tance between the fibers of some motor units and the sensor.
Nonetheless, the display is consistent with the Henneman size
principle.
3.5. Accuracy evaluation

Any attempt at decomposing a signal such as the sEMG signal
that consists of superimposed pulses (action potentials) of un-
known number, of different and varying shapes belonging to a lim-
ited, but unknown, set of MUAPTs must provide a proof for the
degree of accuracy of the attained identifications. Such a proof can-
not be obtained by examining the decomposition performance on
mathematically simulated signals of the type used by Holobar
et al. (2009) because such signals inevitably lack the realism of ac-
tual EMG signals (Mambrito and De Luca, 1984). It is clearly evi-
dent that the MUAPs present in the sEMG signal contain
inflections that are not easily included in mathematically gener-
ated signals, and which vary amongst MUAPs and in different con-
tractions. Another approach, earlier suggested by us (De Luca et al.,
2006), compares the instances of firings of the same MUAP train
decomposed from a surface EMG signal and an indwelling EMG
signal, although improving on the previous approach, is also insuf-
ficient. That is so because the degree of agreement between two
imperfect decompositions does not offer sufficient proof about
the degree of accuracy of either one.



Fig. 6. Plot of entire waveform of a single channel of signal #2 in Table 1 from 50% MVC of the FDI muscle. Plotted directly below is the residual signal from decomposing the
top waveform into 24 MUAPTs.

Fig. 7. Plots of 39 MUAP shapes estimated for a 0.5 s interval of signal # 20 in
Table 1 obtained from a 75% MVC of the Biceps Brachii muscle. The MUAPs are
numbered in their order of recruitment.

5 Rationale: Because it is relatively rare for different motor units to fire simulta-
eously (De Luca and Adam, 1999), less than 10% of the firings of any motor unit, say
, would be expected to be simultaneous with firings of any other single motor unit.
ecause the sEMG signal is crowded, less than 10% of the simultaneous firings would
e spared contamination by other motor units. Thus, less than 1% of motor unit A’s
rings would be simultaneous with one other motor unit and have no additional
ntamination. That corresponds to less than 6 firings even if motor unit A has a total

f 600 firings in 30 s. Thus N = 10 is a conservative choice.
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A substantial proof of the level of accuracy must answer the fol-
lowing two fundamental questions that govern the quality of the
decomposition algorithms:

(1) To what degree does the algorithm succeed in identifying,
for each decomposed motor unit, instances of its action
potential shape that are uncontaminated by superposition
with other action potentials?

(2) To what degree does the algorithm succeed in resolving
complex superpositions of the action potentials from the dif-
ferent motor units?

We have devised and carried out a method for answering
these questions in the context of the sEMG signal decomposition
algorithm described in this report. We begin in the context of
the first question by observing that our algorithm identifies
uncontaminated action potential shapes by utilizing the Maximum
A-posteriori Probability (MAP) classifier of Lefever and De Luca
(1982). This classifier was originally designed to perform the same
task on indwelling EMG signals. For it to work on the sEMG signal,
each decomposable motor unit should have a minimum number of
firings (say N) whose action potentials are uncontaminated (via
superposition) by action potentials of other motor units. Further-
more, the number N should be large enough to make it essentially
impossible for two (or more) decomposable motor units to have N
separate instances of simultaneous firings without additional con-
tamination; this ensures that such simultaneous firings are not
mistaken for uncontaminated firings of a single motor unit. We
have used the value N = 10 for 30 s contractions (and proportion-
ately larger values for longer contractions) in our algorithm as a
conservative choice5 for avoiding the possibility of such confusion.
When applied to the 22 signals of our experimental sEMG database,
our decomposition algorithm identified an average of 19 uncontam-
inated action potentials in less than 30 s of activity of each decom-
posed motor unit. Since the MAP classifier permits the action
potential shapes to vary slowly over time (LeFever and De Luca,
1982), it should also be noted that the decomposition algorithm of
this report utilizes the nearest uncontaminated action potential of
a MUAPT as the template to be used in resolving a complex superpo-
sition in which that MUAPT may be involved.

We now proceed to the second question about the degree to
which our algorithm can accurately resolve complex superposi-
tions of action potentials from different motor units in the
remainder of the sEMG signal. For this purpose, we have devised
a reconstruct-and-test procedure and applied it to each of the 22
signals in our experimental sEMG database. The procedure is de-
signed to: (1) ‘‘reconstruct” each signal of the database from its
uncontaminated action potential shapes, algorithm-identified fir-
ing times, and additive Gaussian noise, and (2) to test the
decomposition algorithm’s accuracy in resolving complex super-
positions by applying it to those reconstructed signals.

Detailed steps of the reconstruct-and-test procedure are illus-
trated in Fig. 8. Step 1 is to decompose a database sEMG signal
s(n). Step 2 is to sum the decomposed MUAPT constituents of s(n)
to obtain a synthesized signal g(n). Note that this signal, g(n), just
like the original signal s(n), has significant time intervals over which
the density of decomposable action potentials reaches several hun-
dreds per second and both signals have similarly-shaped action
potentials for their decomposable motor units. To account for the
indecomposable motor units (residual signal) of s(n), in Step 3 we
obtain a noisy reconstructed signal y(n) by adding white Gaussian
n
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noise to g(n). The variance of the added noise is set to the measured
variance of the residual signal, r[n] = s[n]–g[n]. Step 4 of the proce-
dure uses our sEMG signal decomposition algorithm to decompose
y(n). Since the decomposed MUAPT constituents of s(n) are the ac-
tual MUAPT constituents of y(n), we are able to identify the false
positives and false negatives in the decomposition of y(n)6. The
decomposition accuracy obtained this way for the synthesized sig-
nals is arguably reflective of the degree to which superpositions are
correctly resolved in the corresponding database signals.

The histogram in Fig. 9(A) shows the accuracy levels achieved by
the 561 MUAPTs of the 22 reconstructed signals. Their accuracies
range from around 77% to over 97%, and the average accuracy over
the entire set is 92.5%. Almost 60% of the decomposed MUAPTs ex-
hibit accuracy greater than 90%, while fewer than 5% of the decom-
posed MUAPTs exhibit less than 85% accuracy. The graph in Fig. 9(B)
shows that roughly the same split (i.e., 60% of MUAPTs above 90%
accuracy and 10% of MUAPTs below 85% accuracy) is found in the
decompositions of the 22 reconstructed signals.

We wish to emphasize that the average accuracy value obtained
through the reconstruct-and-test procedure represents the accu-
racy throughout a very large number of 561 MUAPTs, including
all the MUAPTs identified in 22 contractions in five different
muscles. All the firings of the motor units are included in the
calculation of the accuracy, including the force-increasing and
the force-decreasing part of the force profile. It is evident that by
choosing selected MUAPTs, or selected segments of the MUAPTs,
the average accuracy value would increase. We chose not to pro-
vide such selected calculations, but instead to present a measure
that represents the real expectation a user of our technology can
anticipate when studying the firing behavior of motor units during
constant-force and force-varying conditions.

3.6. Accuracy validation

To further validate the accuracy of our sEMG signal decompo-
sition algorithm, we have performed two-source tests of the type
first introduced by Mambrito and De Luca (1984). The basic idea
behind such tests is to carry out cross-checking of the indepen-
dent decompositions of the signals obtained from different sen-
sors for the same muscle contraction. In De Luca et al. (2006),
the decomposition (using an earlier version of our technique)
of the signal from a surface sensor was compared to the decom-
position of the signal from a co-located indwelling sensor. To
make the validation test even more challenging this time, we
performed the two-source test on pairs of sEMG signals that
were simultaneously acquired from two closely spaced sEMG
sensors. For example, when we placed two sEMG sensors above
an FDI muscle performing an isometric contraction that reached
50% MVC, the two signals were decomposed by our algorithm to
reveal 30 and 31 MUAPTs, respectively. Upon analysis of these
decomposition results, we found that over 92% of 3456 firings
of 11 of the decomposed MUAPTs of the signal from one sensor
were locked in with the firings of 11 corresponding MUAPTs
decomposed from the other sensor’s signal. The highest lock-in
rate of any of the 11 locked-in MUAPT pairs was 98% while
the lowest lock-in rate of any of them was 87%. This measure
of accuracy provides nearly identical results to that obtained
with the above described synthesize-and-test procedure. In
Fig. 10(A), we show the bar plots of the 11 MUAPTs of each of
the two sensor signals. The magnified interval of 2 s in
Fig. 10(B) from the two bar plots in Fig. 10(A) illustrates the
locked-in behavior exhibited by matching pairs of decomposed
6 Following Nawab et al. (2008), the decomposition accuracy (A) for a MUAPT is
determined from the number of firings (NFIR), the number of false positives (NFP), and
the number of false negatives (NFN) in the decomposition: A ¼ NFIR�NFN�NFP

NFIR
� 100%.
MUAPTs of the two sensor signals. One error occurred near the
13 s mark. Finally, we also note that there was perfect agree-
ment between the decompositions of the two sensor signals
about the recruitment order of the 11 common motor units, a
strong indication that our algorithm effectively captures the
recruitment order of the various motor units.

Although compelling, the results of the ‘‘two sensor” procedure
provide a less rigorous and a less complete test than the above de-
scribed ‘‘reconstruct-and-test” procedure. The two sensor test can
only compare the accuracy of the MUAPTs that are common to the
signals from each of the sensors. The accuracy of the remainder of
the MUAPTs is not known. Whereas, the reconstruct and test pro-
cedure measures the accuracy of all the MUAPTs that are
decomposed.

3.7. Data-driven behavior

The reported algorithm’s behavior is data-driven in three
important respects. First, if the algorithm is applied at different
times to identical input signals, it produces identical output data
each time. Second, if the input data of the algorithm is multiplied
by a fixed non-zero constant, the output data of the algorithm re-
mains unchanged except for the scaling of the estimated action po-
tential shapes by the same fixed constant. Third, the algorithm’s
operation is based solely on the assumption that the input sEMG
signal originates from an isometric contraction of a human muscle.
It does not utilize any other inputs such as information identifying
the muscle or the force profile of the contraction.

3.8. Processing speed versus accuracy

As indicated in Table 1, the algorithm takes on the order of 3–4 s
to obtain 1 s of each decomposed MUAPT when executed on a
state-of-the-art Personal Computer. This is 3–4 times slower than
our most accurate decomposition algorithm for indwelling EMG
signals (Nawab et al., 2008). However, it is possible to speed up
the algorithm significantly by sacrificing accuracy. For example,
we have speeded up the algorithm by a factor of 3–4 but the result-
ing accuracy is typically around 80% for the same number of
decomposed MUAPT constituents as found by the most accurate
version of the algorithm.
4. Discussion

The algorithm described in this report was able to automatically
decompose sEMG signals collected from various muscles contract-
ing isometrically at force levels ranging up to 100% MVC. We were
able to decompose sEMG signals from locations where the muscle
was covered with up to 1.5 cm of adipose tissue. The number of
MUAPTs obtained from the contractions varied among muscles
and force levels. It ranged from 20 to 30 MUAPTs, with a present
maximum of 40 obtained from a 75% MVC in the Biceps Brachialis
muscle. See Table 1 for additional details. The accuracy of the firing
times of each of the identified MUAPTs was on average 92.5%, and
in rare cases reaching levels above 97%. This performance is
achieved for all signals that are collected on a clean skin surface,
with the sensor firmly attached to the skin, and without any clip-
ping in the sEMG signal.

The reported system’s decomposition performance at a variety of
force levels (up to 100% MVC) stands in contrast to that of recently
reported sEMG signal decomposition systems that use a convolu-
tional blind signal separation (CBSS) approach (Holobar and Zazula,
2007; Holobar et al., 2009) in conjunction with high-density sEMG
sensors. The CBSS approach does not use template matching during
decomposition and has been reported to succeed in decomposing
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sEMG signals collected from isometric contractions whose force lev-
els rise slowly to a level less than 10% MVC and then are slowly de-
creased. Low-force contractions of this type ensure that the
number of active motor units at any time during the contraction is
low enough to avoid high degrees of superposition. Furthermore,
they help to mitigate decomposition errors that result from the fact
that the sEMG signal violates some of the foundational mathemati-
cal assumptions underlying the CBSS approach:

CBSS models the input sEMG signal as consisting of decompos-
able MUAPTs that are in turn summed with spatially and tempo-
rally independent samples of ‘‘noise” (Holobar and Zazula, 2007).
However, the ‘‘noise” in the real sEMG signal is dominated by the
contributions of indecomposable MUAPTs (De Luca et al., 2006).
Given that the high-density sEMG sensor is designed to ensure that
the set of MUAPTs detected at each of its numerous electrodes re-
mains essentially invariant, the ‘‘noise” component of the sEMG
signal does not meet the criterion of spatial and temporal
independence.

CBSS assumes (Holobar and Zazula, 2007) ‘‘weakly correlated”
firing times of MUAPTs. This runs afoul of physiological reality be-
cause of phenomena such as the common drive (De Luca et al.,
1982; De Luca and Erim, 1994; McGill et al., 2005, among others)
of different motor units.

CBSS assumes (Holobar and Zazula, 2007; Holobar et al., 2009)
that the shape of the action potential of a motor unit remains con-
stant throughout a contraction, even though that is not borne out
in actual sEMG signals. For example, in Fig. 11(A) we show how
the shape of the action potential of a particular MUAPT is found
to change by the algorithm of this report at 1 s, 11 s, and 21 s into
the constant-force region of a trapezoidal contraction of the FDI
muscle at 50% MVC.

In contrast to CBSS, our template-matching approach, enhanced
by artificial intelligence methods, avoids each of the above mathe-
matically imposed restrictions. More specifically:

� With respect to the indecomposable MUAPTs, our
approach treats their signal contributions as being composed
of action potentials whose shapes are not accurately deter-
minable from the signal because of either their low ampli-
tudes or their high rates of superposition with the action
potentials of other MUAPTs. Thus, there is no constraint
placed on their signal contributions to be spatially or tempo-
rally independent.
� In regard to correlations of the firing times of different MUAPTs,
our approach does explicitly exclude the possibility of any pair
of decomposable MUAPTs having more than 10 instances
(within any 30 s interval) where they have identical firing times
while also not being involved in superposition with any of the
other MUAPTs. There are, however, no further constraints
imposed on how the firing times of different MUAPTs may or
may not be correlated.
� As to the issue of allowing changes in the action potential

shape, our approach explicitly allows the action potential
shape of each MUAPT to evolve over the duration of a contrac-
tion, as was incorporated into the original Maximum A-poste-
riori Probability (MAP) classifier of Lefever and De Luca
(1982).

The five muscles used for the tests were chosen to represent
different challenges to the algorithm. The FDI was chosen be-
cause it is a small muscle containing about 120 motor units
(Feinstein et al., 1955) in a relatively small volume and the mus-
cle is covered by a thick loose skin. The remaining muscles have
a greater number of motor units, ranging up to approximately
774 in the BB (Buchthal, 1961). The TA and the BB muscles
are large muscles that usually have little adipose tissue between
the muscle tissue and the relatively thin skin above them. The
VL and the BF are relatively large muscle commonly having up
to 1 cm of adipose tissue between the surface of the muscle
and the skin in most non-obese subjects, and more in obese sub-
jects. The sEMG signal from the BF presented a serious challenge
to the decomposition algorithm due to the 1.5 cm of adipose tis-
sue in the subjects who contributed the sample contractions in
the database.

The ultimate goal of any algorithm for decomposing the
sEMG signal is to provide accurate and physiologically meaning-
ful data about the underlying MUAPT activity. Achievement of
this objective is made difficult by: (1) the occurrence of exces-
sive amounts of superposition between the action potentials of
different MUAPT constituents of the sEMG signal; (2) subtle
changes in shape of the different action potentials contained in
each MUAPT; and (3) high degree of inter-MUAPT similarity of
action potential shapes. The challenge of these factors to sEMG
signal decomposition is proportionately greater when the tissue
above the muscle is excessive causing a decrease in the ampli-
tude of the signal, or when the number of MUAPT constituents
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and/or their firing rates increase, as happens when a muscle
generates a greater force.
4.1. Shape changes

The changes in action potential shape of a MUAPT are much
more subtle in the sEMG signal when compared to those found
in the indwelling EMG signal (Nawab et al., 2008). Nevertheless,
we have found it useful to track the dynamics of shape change in
each decomposed MUAPT of the sEMG signal in order to avoid
some of the identification errors that arise when two MUAPT con-
stituents have similarly-shaped action potentials. As illustrated in
Fig. 11(A), the energy of an action potential of a particular MUAPT
can vary by an amount on the order of 5%. Farina et al. (2008) have
also pointed out the existence of such variations. It is precisely be-
cause of such variations that our Precision Decomposition ap-
proach since the earliest work of LeFever and De Luca (1982) has
always incorporated mechanisms for tracking the dynamics of
shape change within each action potential train to distinguish it
from other trains of similarly-shaped action potentials.

4.2. Shape similarity

In comparison to the case of indwelling EMG signals, a MUAPT
of the sEMG signal has a much greater likelihood of its action po-
tential shape being similar to that of another MUAPT constituent.
Shape similarity of action potentials is illustrated in Fig. 11(B) for
three different MUAPTs of the sEMG signal acquired from a BB
muscle at 50% MVC. The algorithm was able to identify each shape
as belonging to a different MUAPT even though the differences be-
tween the action potential shapes in Fig. 11(B) are of the same or-
der as the differences between the action potential shapes in
Fig. 11(A) for a single MUAPT. It should be noted that in order to
identify similarly-shaped action potentials as belonging to differ-
ent MUAPTs, our algorithm explicitly rules out the possibility that
they belong to the same underlying MUAPT. It does so by (1) find-
ing instances where the different action potential shapes are in
superposition with each other and by (2) verifying that the com-
bined firings of the two MUAPTs would produce too many in-
stances of unreasonably small inter-pulse intervals.

4.3. Excessive superposition

The challenge of excessive MUAPT superposition in sEMG sig-
nals is illustrated by the top plot in Fig. 12 that shows one chan-
nel of a filtered 20 ms segment of the sEMG signal obtained from
the FDI muscle at 50% MVC. The reported algorithm reveals this
segment to be the superposition of nine different action poten-
tials, as shown in the remaining plots of Fig. 12. This result
was also verified by the accuracy evaluation test that is de-
scribed in Section 3. Note that while some of the MUAPT constit-
uents of the segment are readily apparent to the naked eye,
others are essentially buried under larger action potentials. In
cases such as this, the algorithm makes two types of errors; an
‘‘identification error” or a ‘‘positioning error”. An identification
error is one in which the action potential of one MUAPT is mis-
taken for a similarly-shaped action potential of another MUAPT.
A positioning error is one whereby an action potential cannot be
located precisely. Even if a MUAPT is correctly identified, the rel-
ative smoothness of the shapes of the constituent action poten-
tials in Fig. 12 makes it likely for a positioning error to occur.
The likelihood of a positioning error is greater for low amplitude
motor units because (1) they have shallower peaks whose max-
ima are difficult to identify precisely and (2) they have greater
chance of being ‘‘buried” via superposition with larger action
potentials. It is for this reason that at the end of our algorithm
each firing of a decomposed MUAPT of relatively low amplitude
is slightly re-positioned by cross-correlating its action potential
template with a modified version of the sEMG signal in the
vicinity of the firing. Specifically, the modification to the sEMG
signal involves subtracting off the action potential templates of
higher-amplitude MUAPTs that are at least partially superim-
posed with the firing under consideration.

4.4. Dynamic range of MUAPT amplitudes

As illustrated by the action potential plots in Fig. 7, the lowest-
amplitude MUAPTs decomposed by our algorithm tend to be sev-
eral times smaller than the MUAPT with the largest amplitude. It
follows that the lower amplitude motor units have a tendency to
get ‘‘buried” whenever they are superimposed to a significant ex-
tent by the larger amplitude MUAPTs. This might lead one to sus-
pect that the lower-amplitude MUAPTs are generally decomposed
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Fig. 10. (A) A comparison of all the firings of 11 MUAPTs that were identified by the decomposition of two signal sets obtained from two sensors located on the First Dorsal
Interosseous muscle contracting at 50% MVC. The first signal set decomposed into 30 MUAPTs and the second into 31 MUAPTs. Eleven (11) were common in both signals sets.
The blue bars correspond to the MUAPTs from sensor #1 while the black bars correspond to those of sensor #2. (B) A magnified interval of 2 s from the two bar plots
illustrates the simultaneous occurrence of the firings from an individual motor unit seen in each of the two sensors.

Fig. 11. (A) An illustration of changing MUAP shapes of a motor unit throughout a contraction. The three shapes represent the MUAP of the same motor unit as it appears at
different times (1, 11, and 21 s) in the steady region of a contraction. (B) An illustration of the similarity of the shapes of different MUAPs occurring during an epoch of a
contraction.
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less accurately by our algorithm than their larger amplitude
counterparts. This turns out not to be the case. Instead, the accu-
racy of decomposition of the lower-amplitude MUAPTs is helped
by two factors. First, each lower-amplitude MUAPT typically has a
relatively greater firing rate than its higher amplitude counter-
parts and thus tends to provide our algorithm more instances of



Fig. 12. Top Plot: A single channel of a filtered 12 ms segment of the sEMG signal
obtained from the First Dorsal Interosseous muscle contracting at 50% MVC. Bottom
Plots: Nine motor unit action potentials found by the sEMG decomposition algorithm
to be in superposition in the 20 ms segment. The sum of all 9 Motor unit action
potentials yields the trace in the top plot. This figure shows the capacity of the
decomposition algorithm to extract action potentials from a complex superposition.
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firings that are not contaminated by superposition. Furthermore,
the low-amplitude firings contaminated by superposition are
aided by a ‘‘re-positioning” process in which higher-amplitude
MUAPTs are pealed off from the sEMG signal to more precisely
position the lower-amplitude MUAPTs. Of course, these two fac-
tors help only up to a certain point. MUAPTs whose amplitudes
are too low (typically 7–10 times smaller than the largest ampli-
tude MUAPT) are typically ignored by our current version of the
algorithm because their shapes are too ‘‘flat” or non-descript to
be easily distinguished from each other or to be detected with
sufficient confidence amidst superposition by larger amplitude
MUAPTs.

4.5. Compatibility with previous physiological metrics

The firing characteristics of motor units obtained by the pres-
ent algorithm have values that are consistent with those ob-
tained with our previous algorithms operating on indwelling
EMG signals, and with the reported observations of others. A
summary of the findings are reported here. When we calculated
the degree of synchronization of firings between pairs of motor
units according to the method of De Luca et al. (1993), we found
the value to range from 4% to 15%. These values are consistent
with those obtained with indwelling EMG signal decomposition
(De Luca et al., 1993) and with those of Semmler and Nordstrom
(1998) and Semmler et al. (2000) who also decomposed indwell-
ing EMG signals. We also tested the coefficient of variation of
the inter-pulse intervals and found values in the neighborhood
of 0.10–0.15, numbers that are consistent with those reported
by Moritz et al. (2005) and Tracy et al. (2005). The near maximal
firing rates of the FDI were found to reach values of 37 pulses
per second, whereas those of larger muscles such as the VL only
reached lower values. These values are in agreement with previ-
ous reports by De Luca et al. (1982), Gandevia et al. (1990), Erim
et al. (1999), Roos et al. (1999), Adam and De Luca (2005), and
Seki et al. (2007). These tests support the notion that the motor
unit firing intervals automatically obtained with the present
algorithm are consistent with known physiological characteris-
tics of the firing behavior of motor units.

4.6. Potential clinical applications

The design of the pin lay-out in the sensors renders the sensor
easy to clean. The small size of the sensor makes it useful for inves-
tigating the motor unit behavior of small muscles such as those in
the hand and face. The requirement of only few (presently four)
channels of sEMG signals constrains the electronics of the system
to a small, manageable unit.

The technology described herein has the potential of providing
clinicians with a new tool for investigating and assessing the char-
acteristics of active motor units. It can provide all the information
presently provided by invasive needle sensor techniques as well as
additional parameters which are generally not presently used in
clinical studies.

Like the needle technology used in clinical environments, our
technology can also provide information about the morphology
of the action potentials. But unlike present needle technology,
it is not limited to the short-term viewing of action potentials
from two or three motor units. Our technology typically presents
the morphology of the shapes of up to 40 concurrently active
motor units, without relocating the sensor. It also provides an
entire spectrum of motor units that allows investigators to ana-
lyze higher threshold motor units. For example, Fig. 13 presents
polyphasic MUAPs seen in elderly individuals. These data were
obtained from tests, similar to those described in Section 2, per-
formed on elderly subjects. There are two interesting aspects to
these data. Firstly, it is apparent that polyphasic MUAPs can be
detected with our sEMG technology. Secondly, it is possible to
obtain polyphasic MUAPs from low-level contractions (10%
MVC) as shown in the top part of Fig. 13, as well as from
high-level contractions (45% MVC) as shown in bottom part of
Fig. 13.

Some of the firing parameters of the motor units that can be ex-
tracted from the decomposition of the sEMG signal are:

(a) The standard deviation and coefficient of variation of the fir-
ing intervals which provide an assessment of the degree of
firing regularity.

(b) The recruitment and de-recruitment thresholds of motor
units which have been found to vary during fatigue (Adam
and De Luca, 2003).

(c) The time-varying firing rates of the motor units which indi-
cate the degree of excitation to the motoneurons during the
time course of a contraction.

(d) The common drive (the cross-correlation of the time-varying
firing rates of pairs of motor units) that provides an assess-
ment of the degree of common excitation to the motoneuron
pool. Alterations in this parameter have been found in acute
cerebellar patients (Sauvage et al., 2006), in elderly, but neu-
rologically healthy, subjects (Erim et al., 1999), and during
fatigue (Contessa et al., 2009).

(e) The synchronization of firings among motor units, altera-
tions of which have been reported under a variety of circum-
stances in healthy subjects. But, this parameter which
indicates common instantaneous excitation among moto-
neurons has not yet been explored in clinical studies.

This new information may provide further insights into the
pathophysiology of disease processes while providing clinical
applications in earlier disease detection, monitoring disease pro-
gression and evaluating efficacy of therapeutic interventions, espe-
cially for upper motoneuron disorders.



Fig. 13. Polyphasic action potentials derived from the decomposition of surface
EMG signals. Both are from elderly subjects, 79 and 78 years old. Both samples were
obtained from the First Dorsal Interosseous (FDI) muscle. The polyphasic action
potential in the top trace was from a motor unit recruited at 10% MVC and that in
the bottom trace from a motor unit recruited at 45% MVC.

1614 S.H. Nawab et al. / Clinical Neurophysiology 121 (2010) 1602–1615
Acknowledgements

This work was supported in part by Grant # NS058250 from
NINDS/NIH and in part by Delsys Inc. We would like to thank Bryan
Cole and Jason Lin for their assistance in algorithm implementation
and Prof. Serge Roy, Don Gilmore, Farah Zaheer, Jeff Soto, Paola
Contessa, Emily Hostage, and Mikhail Kuznetsov for their assis-
tance in data collection and analysis.
References

Aarabi A, Grebe R, Wallois F. A multistage knowledge-based system for EEG seizure
detection in newborn infants. Clin Neurophysiol 2007;118:2781–97.

Adam A, De Luca CJ. Recruitment order of motor units in human vastus lateralis
muscle is maintained during fatiguing contractions. J Neurophysiol
2003;90:2919–27.

Adam A, De Luca CJ. Firing rates of motor units in human vastus lateralis muscle
during fatiguing isometric contractions. J Appl Physiol 2005;99:268–80.

Bárdossy A, Samaniego-Eguiguren LE. Fuzzy rule-based classification of remotely
sensed imagery. IEEE Trans Geosci Remote Sens 2002;40:362–74.

Buchthal F. The general concept of the motor unit neuromuscular disorders. Res
Publ Assoc Res Nerv Ment Dis 1961;38:3–30.

Chang S, De Luca CJ, Nawab SH. Aliasing rejection in precision decomposition of
EMG signals. In: 30th annual international conference of the IEEE engineering in
medicine and biology society, Vancouver, Canada, 2008, pp. 4972–75.

Contessa P, Adam A, De Luca CJ. Motor unit control and force fluctuation during
fatigue. J Appl Physiol 2009;107:235–43.

De Luca CJ, Adam A. Precision decomposition of intramuscular electromyographic
signals. In: Windhorst U, Johasson H (Eds), Modern techniques on neuroscience
research. Heidelberg: Springer; 1999. pp. 757–76.

De Luca CJ, Adam A, Wotiz RP, Gilmore LD, Nawab SH. Decomposition of surface
EMG signals. J Neurophysiol 2006;96:2769–74.

De Luca CJ, Erim Z. Common drive of motor units in regulation of force. Trends
Neurosci 1994;17:299–305.

De Luca CJ, Erim Z. Common drive in motor units of a synergistic muscle pair. J
Neurophysiol 2002;87:2200–4.

De Luca CJ, Foley PJ, Erim Z. Motor unit control properties in voluntary isometric
isotonic contractions. J Neurophysiol 1996;76:1503–16.

De Luca CJ, Roy AM, Erim Z. Synchronization of motor unit firings in human
muscles. J Neurophysiol 1993;70:2010–23.

De Luca CJ, LeFever RS, McCue MP, Xenakis AP. Behavior of human motor units in
different muscles during linearly-varying contractions. J Physiol
1982;329:113–28.

Englehart K, Hudgins B, Parker PA, Stevenson M. Classification of the myoelectric
signal using time-frequency based representations. Med Eng Phys
1999;21:431–8. Special issue: intelligent data analysis in electromyography
and electroneurography.
Englehart K, Hudgins B, Parker PA. A wavelet based continuous classification
scheme for multifunction myoelectric control. IEEE Trans Biomed Eng
2001;48:302–11.

Erim Z, Beg MF, Burke DT, De Luca CJ. Effects of aging on motor-unit control
properties. J Neurophysiol 1999;82:2081–91.

Erim Z, Lin W. Decomposition of intramuscular EMG signals using a heuristic fuzzy
expert system. IEEE Trans Biomed Eng 2008;55:2180–9.

Farina D, Negro F, Gazzoni M, Enoka RM. Detecting the unique representation of
motor-unit action potentials in the surface electromyogram. J Neurophysiol
2008;100:1223–33.

Feinstein B, Lindegard B, Nyman E, Wohlfart G. Morphological studies of motor
units in normal human muscles. Acta Anat 1955;23:127–42.

Gandevia SC, Macefield G, Burke D, McKenzie DK. Voluntary activation of human
motor axons in the absence of muscle afferent feedback, the control of the
deafferented hand. Brain 1990;113:1563–81.

Gini F, Rangaswamy M. Knowledge based radar detection, tracking and
classification. Wiley-Interscience; 2008.

Holobar A, Zazula D. Multichannel blind source separation using convolution kernel
compensation. IEEE Trans Signal Process 2007;55:4487–96.

Holobar A, Farina D, Gazzoni M, Merletti R, Zazula D. Estimating motor unit
discharge patterns from high density surface electromyogram. Clin
Neurophysiol 2009;120:551–62.

Jiang N, Englehart KB, Parker PA. Extracting simultaneous and proportional neural
control information for multiple-DOF prostheses from the surface
electromyographic signal. IEEE Trans Biomed Eng 2009;56:1070–80.

Kundu M, Nasipuri M, Kumar Basu D. Knowledge-based ECG interpretation: a
critical review. Pattern Recogn 2000;33:351–73.

Leake D. Case-based reasoning: experiences, lessons, and future directions. AAAI
Press/MIT Press; 2000.

LeFever RS, De Luca CJ. A procedure for decomposing the myoelectric signal into its
constituent action potentials. Part I. Technique, theory and implementation.
IEEE Trans Biomed Eng 1982;29:149–57.

Leondes CT. Knowledge-based systems: techniques and applications. Academic
Press; 2000.

Lesser V, Nawab SH, Klassner F. IPUS: an architecture for the integrated processing
and understanding of signals. Artif Intell 1995;77:129–71.

Ligeza A. Logical foundations for rule-based systems. Springer; 2006.
Mambrito B, De Luca CJ. A technique for the detection, decomposition and analysis

of the EMG signal. Electroencephal Clin Neurophysiol 1984;58:175–88.
McGill KC, Lateva ZC, Marateb HR. EMGLAB: an interactive EMG decomposition

program. J Neurosci Methods 2005;149:121–33.
Merletti R, Parker PA. Electromyography: physiology, engineering, and non-invasive

applications, IEEE press series on biomedical engineering. Wiley-IEEE Press; 2004.
Moritz CT, Barry BK, Pascoe MA, Enoka RM. Discharge rate variability influences the

variation in force fluctuations across the working range of a hand muscle. J
Neurophysiol 2005;93:2449–59.

Nawab SH, Chang S, De Luca CJ. Surface EMG signal decomposition using
empirically sustainable biosignal separation principles. In: Proceedings of the
thirty-first international conference of the IEEE engineering in medicine and
biology society, Minneapolis, Sept. 2–6, 2009.

Nawab SH, Wotiz R, De Luca CJ. Decomposition of Indwelling EMG Signals. J Appl
Physiol 2008;105:700–10.

Nawab SH, Wotiz RP, De Luca CJ. Multi-Receiver precision decomposition of
indwelling EMG signals. In: Proceedings of the twenty-eighth international
conference of the IEEE engineering in medicine and biology society, New York
City, 2006, pp. 1252–55.

Nawab SH, Wotiz RP, De Luca CJ. Improved resolution of pulse superpositions in a
knowledge-based system for EMG decomposition. In: Proceedings of the
twenty-sixth international conference of the IEEE engineering in medicine
and biology society, San Francisco, CA, September 2004, pp. 69–71.

Nawab SH, Wotiz RP, Hochstein LM, De Luca CJ. Next-generation decomposition of
multi-channel EMG signals. In: Proceeding of the 2nd joint meeting IEEE
engineering in medicine and biology society and biomedical engineering
society, Houston, TX, October 2002, pp. 36–7.

Person RS. Rhythmic activity of a group of human motoneurons during
voluntary contraction of a muscle. Electroencephalogr Clin Neurophysiol
1974;36:585–95.

Roos MR, Rice CL, Connelly DM, Vandervoort AA. Quadriceps muscle strength,
contractile properties, and motor unit firing rates in young and old men. Muscle
Nerve 1999;22:1094–103.

Sauvage C, Manto M, Adam A, Roark R, Jissendi P, De Luca CJ. Ordered motor unit
firing behavior in acute cerebellar stroke. J Neurophysiol 2006;96:2769–74.

Seki K, Kizuka T, Yamada H. Reduction in maximal firing rate of motoneurons after
1-week immobilization of finger muscle in human subjects. J Electromyogr
Kinesiol 2007;17:113–20.

Semmler JG, Nordstrom MA. Motor unit discharge and force tremor in skill- and
strength-trained individuals. Exp Brain Res 1998;119:27–38.

Semmler JG, Steege JW, Kornatz KW, Enoka RM. Motor-unit synchronization is not
responsible for larger motor-unit forces in old adults. J Neurophysiol
2000;84:358–66.

Stashuk DW. Decomposition and quantitative analysis of clinical electromyographic
signals. Med Eng Phys 1999;21:389–404.

Stashuk DW. EMG signal decomposition: how can it be accomplished and used? J
Electromyogr Kinesiol 2001;11:151–73.

Tanji J, Kato M. Firing rate of individual motor units in voluntary contraction of
abductor digiti minimi muscle in man. Exp Neurol 1973;40(3):771–83.



S.H. Nawab et al. / Clinical Neurophysiology 121 (2010) 1602–1615 1615
Tracy BL, Maluf KS, Stephenson JL, Hunter SK, Enoka RM. Variability of motor unit
discharge and force fluctuations across a range of muscle forces in older adults.
Muscle Nerve 2005;32:533–40.

Winograd JM, Nawab SH. A C++ software environment for the development of
embedded signal processing systems. In: Proceedings of IEEE international
conference on acoustics, speech, and signal processing, Detroit, MI, 1995, pp.
2715–18.

Zhou P, Lowery MM, Rymer WZ. Extracting motor unit firing information by
independent component analysis of surface electromyogram: a preliminary
study using a simulation approach. Int J Comp Syst Signals 2006;7:19–28.


	High-yield decomposition of surface EMG signals
	Introduction
	Methods
	The sEMG sensor
	EMG signal acquisition
	Data collection
	Signal decomposition algorithm
	PD-IPUS stage
	IGAT stage

	Results
	MUAPT inter-pulse intervals
	Time sequence of MUAPT firing times
	Residual signal
	The MUAP shapes
	Accuracy evaluation
	Accuracy validation
	Data-driven behavior
	Processing speed versus accuracy

	Discussion
	Shape changes
	Shape similarity
	Excessive superposition
	Dynamic range of MUAPT amplitudes
	Compatibility with previous physiological metrics
	Potential clinical applications

	Acknowledgements
	References


