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ABSTRACT: Parkinson’s disease (PD) can present
with a variety of motor disorders that fluctuate throughout
the day, making assessment a challenging task. Paper-
based measurement tools can be burdensome to the
patient and clinician and lack the temporal resolution
needed to accurately and objectively track changes in
motor symptom severity throughout the day. Wearable sen-
sor-based systems that continuously monitor PD motor dis-
orders may help to solve this problem, although critical
shortcomings persist in identifying multiple disorders at
high temporal resolution during unconstrained activity. The
purpose of this study was to advance the current state of
the art by (1) introducing hybrid sensor technology to con-
currently acquire surface electromyographic (sEMG) and
accelerometer data during unconstrained activity and (2)
analyzing the data using dynamic neural network algo-
rithms to capture the evolving temporal characteristics of
the sensor data and improve motor disorder recognition of

tremor and dyskinesia. Algorithms were trained (n 5 11
patients) and tested (n 5 8 patients; n 5 4 controls) to rec-
ognize tremor and dyskinesia at 1-second resolution based
on sensor data features and expert annotation of video re-
cording during 4-hour monitoring periods of unconstrained
daily activity. The algorithms were able to make accurate
distinctions between tremor, dyskinesia, and normal move-
ment despite the presence of diverse voluntary activity.
Motor disorder severity classifications averaged 94.9%
sensitivity and 97.1% specificity based on 1 sensor per
symptomatic limb. These initial findings indicate that new
sensor technology and software algorithms can be effective
in enhancing wearable sensor-based system performance
for monitoring PD motor disorders during unconstrained
activities. VC 2013 Movement Disorder Society
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Attempts at developing a wearable device that can
automatically track changes in the presence and sever-
ity of involuntary motor disorders have focused primar-
ily on Parkinson’s disease (PD). In addition to being
among the most common neurodegenerative diseases

among adults,1 PD can present with a variety of differ-
ent motor disorders that fluctuate throughout the day.
Effective therapeutic management of these disorders
depends on the ability of the clinician to accurately
track their progression over time and in different parts
of the body. The current means of tracking longitudinal
changes in the patient’s motor status outside the clinic
is dependent on the patient making entries into a motor
diary. Diaries are prone to subjective errors and poor
sensitivity when detecting change4–7 and may be bur-
densome for individuals with PD, who are at risk for
cognitive decline and dementia2,3

Wearable, sensor-based devices for monitoring PD
motor disorders are designed to record, analyze, and
automatically interpret mechanical and/or physiologi-
cal signals resulting from the patient’s voluntary and
involuntary muscle activity. Recent advances in weara-
ble sensor technology8 and improvements in machine
learning algorithms9 have brought us closer to
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overcoming the inherent challenges of implementing
such devices. Despite this prospect, no system is cur-
rently available that can remotely monitor PD motor
disorders during unrestricted daily activities with suffi-
cient temporal or spatial resolution to track the full
complement of PD motor disorders and their fluctua-
tions throughout the day.

The most common approaches to developing a PD
monitor have relied on accelerometers10–15 (ACCs),
gyroscopes,16–18 inertial sensors,19 and sEMG sen-
sors.20,21 Many of these devices have been validated
to work reasonably well at identifying a single motor
disorder such as resting tremor18,20 or dyskinesia12–15

during scripted activities. These restrictions simplify
the task of identifying a disorder because confounding
signals generated by normal extemporaneous daily
activities are minimized. Other recent developments
have focused on automating the administration of
standardized motor assessment scales for PD disor-
ders.18,19,22,23 These approaches were designed pri-
marily for identifying tremor and/or bradykinesia, and
have not included other motor signs of PD or dyskine-
sia. They also shift the burden of timely administra-
tion from the clinician to the patient, which may be
challenging because of the cognitive deficits that are
characteristic of advanced Parkinson’s disease.3

This report describes sensor and data-processing
technologies that achieve high temporal and spatial re-
solution for identifying the severity of tremor and dys-
kinesia using a minimal number of sensors during
unconstrained activities.

Patients and Methods

Subjects

Two groups of subjects were tested (Table 1): 1
group (n 5 11 with PD) provided a data set for algo-
rithm development (training set), and the other group
(n 5 8 with PD; n 5 4 without PD) provided data for
testing the algorithms (test set). The acquisition of sep-
arate databases was implemented to demonstrate that
the algorithms are subject-independent and need not
require pretraining for each application. Patients were
screened for mild to moderately severe categories of
Parkinson’s disease (Hoehn–Yahr stages II–III while
“on” and Hoehn–Yahr stages III–IV while “off”),24

with a mean disease duration of 13 years for both
groups. All were taking levodopa as well as other anti-
parkinsonian medications. The patients presented with
tremor scores ranging from 0 to 4, based on the Uni-
fied Parkinson’s Disease Rating Scale (UPDRS)23 and
dyskinesia scores ranging from 0 to 4 based on the
modified Abnormal Involuntary Movement Scale (m-
AIMS).25 None were diagnosed with dementia, and all
were ambulatory. Non-PD subjects were selected to be
within the age range of the patients and were screened

for neuromuscular disorders, including PD. All sub-
jects provided voluntary written informed consent
approved by the Boston University institutional review
board prior to their participation in the study.

Methods
Data Acquisition

Our goal is to develop a system that requires only 1
sensor per symptomatic limb for identifying tremor
and dyskinesia in that limb. Accordingly, only 1 sen-
sor was placed on each of the 4 extremities. Sensors
were on the middle of the muscle belly (away from
tendon and innervation zones) of the extensor carpi
ulnaris (ECU) muscle in the upper limbs and of the
tibialis anterior (TA) muscle in the lower limbs. Each
hybrid sensor (Fig. 1) is instrumented with a triaxial
accelerometer (dynamic range, 66 g; maximum reso-
lution, 0.0008 g/bit; bandwidth range, DC to 50 Hz)
and sEMG sensing (gain of 1000; bandwidth range,
20–450 Hz; baseline noise, <1.25 lV root mean
square [RMS]). The selection of the TA and ECU
muscles was based on pilot experiments that indicated
that these muscles are most active when tremor and
dyskinesia are present in limb muscles. A reference
electrode for the sEMG recordings was attached to the
skin at the C7 bony prominence. Sensors were con-
nected to a hip-worn data acquisition unit, and analy-
sis was conducted offline on a PC workstation
(sampling rate of 1000 Hz using a 16-bit A/D card).

Experimental sessions were continuously videotaped
using fixed and handheld high-resolution digital

TABLE 1. Characteristics of the subject populations used
for training and testing the dynamic neural network (DNN)

algorithms

Training set Test set

PD patients
Number n 5 11 n 5 8
Age (y) 61.1 6 5.5 62.9 6 5.3
Men/women 9/2 7/1
Disease duration (y) 13.5 6 6.0 13.2 6 9.2
Levodopa dose (mg/day) 1072.2 6 788 930 6 839
UPDRS (Motor Score) 37.6 (11.2) 39.5 (10.6)
Tremor prevalence (%)a 17.7 6 19.3 16.7 6 20.7

Mild/moderate/severe (%)c — 54/34/12
Tremor duration (s)b 39.4 6 43.0 42.3 6 34.4
Dyskinesia prevalence (%)a 49.7 6 45.1 48.5 6 25.7

Mild/moderate/severe (%)c — 47/41/12
Dyskinesia duration (s)b 52.3 6 51.7 62.6 6 45.6

Prevalence at rest (%)d 4.8 6 2.2 4.6 6 3.1
Subjects without PD

Number n 5 0 n 5 4
Age (y) — 54 6 16.6
Men/women — 4/0

aPercentage of recording period, regardless of severity or body location.
bBased on how long a disorder persisted at a particular severity level.
cPercentage of total movement disorder duration in the severity categories.
dPercentage of total recording period in which the subject displayed no vol-
untary activity.
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cameras. Data were recorded continuously for approx-
imately 4 hours (to capture a complete “on–off” medi-
cation cycle) in a 100-m2 laboratory arranged to
simulate a home environment. Video and sensor data
were synchronized by generating a pulse tone recorded
on the cameras audio channel. Sessions were timed to
begin approximately 1 hour following the patient’s
first morning dose of antiparkinsonian medication.
The subjects were free to move about the simulated
home environment without coaching from the
researchers or use of an activity script. The physical
and social environment was designed to favor volun-
tary activities that included a variety of mobility states
(sitting, standing, walking, and lying down), during
which numerous diverse activities occurred, such as
preparing snacks, eating, reading, writing, and inter-
acting with researchers and family members.

Data Analysis
Video Annotation

Video annotation for scoring tremor and dyskinesia
severity was carried out by a team of movement disor-
der specialists consisting of 2 neurologists and a nurse
coordinator from the Boston University Parkinson’s
Disease Center and a physical therapist. This informa-
tion provided the basis on which the classification
algorithms were trained and tested. Tremor severity
was scored based on item 20 (tremor at rest) and item
21 (action or postural tremor) of the Motor Examina-
tion section of the UPDRS.23 Dyskinesia severity was
scored based on the m-AIMS scale. Both instruments
use a 5-point Likert scale, with 0 5 the absence of the
disorder and 4 5 the most extreme disorder. Annota-
tors identified the beginning and end of each move-
ment disorder severity occurrence with a resolution of

1 second. Each of the 4 limbs was scored separately.
Annotated scores of tremor and dyskinesia severity in
the lower limb during walking could not be reliably
observed by the movement disorder experts because of
the speed of lower limb movement during gait. The
algorithmic identification of these disorders during
walking was therefore based on sensor data from the
upper extremity.

Signal Processing and Analysis

The sEMG and ACC signals were analyzed to
extract features in the time and frequency domain
using RMS and autocorrelation-based parameters (Fig.
1) derived from previous data-mining studies that dif-
ferentiated voluntary from involuntary movements.26–

29 These features were used as inputs to time-depend-
ent dynamic neural networks (DNNs) that were imple-
mented separately for tremor and dyskinesia using a
multilayered feed-forward architecture. We imple-
mented DNNs instead of the more traditional static
neural networks14 because they are capable of learning
time-dependent relationships between the inputs.
Training was implemented using a temporal back-
propagation algorithm.30 The input features to the
DNNs were calculated over a 2-second window, and
the output produced a single value ranging between
21 (no disorder detected) and 11 (disorder detected)
at the rate of 1 per second. The hidden nodes and the
output node used the weights of a 5-point FIR filter
applied to time-delayed and time-advanced versions of
their respective input data.

When the tremor and dyskinesia motor disorders
were identified, a simple Bayesian maximum a posteri-
ori probability (MAP) classifier was applied to deter-
mine severity level, based on calculations of
accelerometer energy.31,32 The severity detector

FIG. 1. Block diagram of the procedures used to detect and analyze surface electromyographic (sEMG) and accelerometer (ACC) signals from
hybrid sensors. The sensor is configured with parallel sEMG detection bars on the bottom of the sensor and a triaxial accelerometer to provide X,
Y, Z outputs to the data acquisition system. sEMG and ACC features are extracted from these data to serve as inputs to a dynamic neural network
(DNN) for tremor (7 input nodes for each feature, 4 hidden nodes, and 1 output node). Features extracted from the ACC signal serve as inputs to
the DNN for dyskinesia (4 input nodes for each feature, 2 hidden nodes, and 1 output node). Severity of each disorder is identified through the use
of a maximum a posteriori probability (MAP) classifier.
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classified each second in which the disorder was pres-
ent using 3 categories: “mild,” “moderate,” or
“severe,” corresponding to a UPDRS and/or m-AIMS
score of 1, 2, or 3–4, respectively. Scores of 3 and 4
were combined because of the relatively few scores of
4 (<10% of the disorder duration).

Evaluating the Classification Algorithms

Discrepancies between the classification algorithm
and expert annotation were evaluated on the basis of
sensitivity and specificity measurements. Sensitivity
describes the ability of the algorithm to correctly iden-
tify a movement disorder when it is present, and speci-
ficity describes the ability of the algorithm to correctly
identify all instances when the movement disorder is
absent.26–29

Based on these calculations, we computed the global
error rate (GER) from a normalized set of testing data
in which the number of seconds during which the dis-
order was present is equal to the number of seconds
when the disorder was absent. The formula used for
calculating the global error rate is: 1 2 ([sensitivity 1

specificity]/2).
The GER was normalized to adjust for the possible

influence of mobility state (ie, duration of sitting,
standing, and walking) by calculating a separate GER
for each of the 3 mobility states and calculating an av-
erage value. Without this normalization, algorithm
performance could be exaggerated (eg, if the data
being analyzed were primarily from quiet sitting). To
measure the ability of the algorithm to avoid localized
errors, we also determined a local error rate,27,29

defined as the proportion of 30-second intervals in
which more than half the classifications were
incorrect.

Results

Voluntary Versus Involuntary Activity

The activity summary in Table 1 specifies that the
monitoring periods contained a relatively high pres-
ence of both voluntary and involuntary motor activity,
with a minimum of “at rest” states, thereby providing
numerous instances in which involuntary movement
disorders were differentiated from purposeful move-
ments by the algorithms.

Signal Characteristics

Figure 2 highlights the differences in the signal char-
acteristics for sEMG and accelerometer recordings of
tremor and dyskinesia. Tremor produces periodic
sEMG and accelerometer signal “bursts” that are rela-
tively constant in duration and amplitude (Fig. 2A). In
contrast, dyskinesia produces large irregular fluctua-
tions in both the sEMG and accelerometer signals
(Fig. 2C). These defining signal characteristics are not

always so easily differentiated from normal voluntary
movements, as exemplified in Figure 2D.

Algorithm Training

Algorithms were initially trained using 44 hours of
patient data (n 5 11 PD patients). Dyskinesia and
tremor training and testing sets were segregated by
limb. We were able to reduce the size of the training
database set to 20 hours by iteratively removing redun-
dancies in the type of physical activities recorded for a
particular subject and retaining regions that provided a
sufficient range of movement disorder severities occur-
ring during the different unscripted activities. Training
of the algorithms using the reduced data set achieved
100% sensitivity and 99% specificity for tremor and
98% sensitivity and 99% specificity for dyskinesia.

Algorithm Testing

The algorithms were tested on an independent data
set consisting of 29 hours of data from a different
group of 8 PD patients and 15 hours of data from 4
non-PD subjects (Table 1).

Tremor Results

The results are summarized in Table 2 for different se-
verity levels, mobility states, and extremities. The algo-
rithms were able to detect the occurrence of tremor with
an overall mean sensitivity and specificity of 90.2% and
92.9%, respectively. The relatively low percentage of
localized errors for the entire data set (mean, 1.9%) indi-
cated that tremor detection was accomplished with rela-
tively few localized clusters of errors. Tremor was best
differentiated by the sEMG energy feature and by the
ACC autocorrelation feature for quantifying the fre-
quency content of the signal. The identification of mild,
moderate, and severe subcategories was achieved with
error rates less than 5% (Table 2).

False-positive identification of tremor was produced
in 3 of the patients tested during brief episodes of re-
petitive MU discharges at frequencies consistent with
tremor, but without visible signs of tremor movement
(Fig. 2B). These instances only occurred just prior to
overt clinical signs of tremor.

The training and test databases for tremor were reana-
lyzed without the sEMG features to assess whether hybrid
sensor data improves tremor recognition. The inclusion of
sEMG features with ACC features resulted in a 10%
improvement in overall sensitivity, a 33% improvement
in the GER, and a 77% improvement in the LER com-
pared with an ACC-only database. Specificity was
unchanged, at approximately 94% for both conditions.

Dyskinesia Results

Dyskinesia recognition by the algorithms (Table 2)
resulted in overall sensitivity and specificity of
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approximately 91.7% and 89.5%, respectively, which
is comparable to the results we derived for tremor rec-
ognition. The algorithms were particularly effective in
providing minimal local error rates in the arms (mean,
0.20%) compared with the legs (mean, 3.6%). The
relatively low percentage of localized errors for the
entire data set (mean, 1.9%) indicated that the errors
were not concentrated in specific intervals but were
generally more evenly distributed.

Rapid normal movements were distinguished from
dyskinetic movements primarily from ACC amplitude
and frequency parameters. The identification of mild,
moderate, and severe subcategories of dyskinesia was
achieved with errors that were similar to those
reported for tremor.

Dose-Related Results

Figure 3 provides an example of the ability of the
algorithms to accurately capture continuous dose–
response movement disorder information from the
upper extremity of a PD patient. The figure shows the
rapid fluctuations in movement disorder severity and
gradual transition from dyskinesia to tremor approxi-

mately 150 minutes following the patient’s first dose
of anti-PD medication. Sensitivity ranged from 93.3%
to 97.4% for the different severities of dyskinesia and
from 94.5% to 97.2% for the different severities of
tremor from these data. The lowest specificity was
97% for both disorders.

Discussion

This study introduces a new approach of combining
hybrid sEMG and accelerometer sensor data with
DNN analysis to provide accurate automatic detection
of tremor and dyskinesia severity at a high temporal
resolution in PD patients during unconstrained daily
activities. This capability was achieved based on sin-
gle-sensor data from symptomatic upper or lower
extremities. Although other reports in the literature
have achieved sensitivity and specificity results for
tremor and dyskinesia recognition of approximately
90% or better, as in our study, they did so under con-
straints that we did not impose, such as scripted-activ-
ity monitoring conditions,14–16,18,19,22 low temporal
resolution,14,15,18 or the need for multiple sensors to

FIG. 2. Raw surface electromyographic (sEMG) and accelerometer signal patterns characteristic of tremor (A), subclinical tremor (B), dyskinesia (C),
and normal voluntary movement (D) are shown for data acquired from the wrist extensor location of a patient with PD. Tremor is characterized by
repetitive sEMG signal bursts at a fixed frequency related to cyclic movements of the limb. The periodic sEMG activity is preserved during subclini-
cal tremor but produces no observable limb movement. In contrast, dyskinesia is characterized by irregular sEMG activity and rapid chaotic move-
ments. Normal voluntary activities such as feeding oneself (D) may produce rapid accelerations and bursts of muscle activation that can mimic
dyskinesia (C), making accurate recognition challenging for the algorithms.
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identify a motor disorder in a symptomatic
limb.14,15,22 Our performance metrics were also
achieved on the basis of the analysis of sensor data
that were independent of the training data, thereby
facilitating clinical ease of use in future applications.
Movement disorder recognition algorithms designed to
produce data points with a resolution measured in
minutes or hours would have failed to capture the
characteristically unpredictable, rapid, and transient
nature of the motor disorder fluctuations in this PD
population.

A goal of our study was to produce accurate motor
disorder classifications using a software algorithm
requiring a minimal number of miniaturized sensors.
An important design consideration was to select sen-
sor locations that were amenable to self-application
and use under clothing. This goal was achieved by
developing an adaptable 4-sensor approach to derive
data from distal limb segments for ease of use. In its
maximal configuration of 1 sensor per limb, a compre-
hensive assessment of the body can be achieved, as for

instance when doing a baseline screening. For those
patients who may have difficulty managing multiple
sensors in their home, the number of sensors can be
restricted to the most symptomatic or functionally im-
portant limb(s). Current wearable sensor solutions can
require as many as 615or 822 sensors and are neither
adaptable nor limb specific.

The use of a hybrid sensor in the current study ori-
ginated from our previous work, in which we demon-
strated that this combination provided advantages in
training an artificial neural network to identify a vari-
ety of different activities of daily living when com-
pared with an accelerometer-only approach.33 The
current study also compared recognition performance
of the algorithms for inputs with and without com-
bined sEMG and ACC data, documenting the value-
added benefit of having both sets of data for tremor
recognition. Further studies are needed to determine
whether the identification of “subclinical” tremor
using both sEMG and ACC signals can be considered
a clinical advantage, for example, for early detection
of PD in patients who are otherwise asymptomatic.

The analytic approach of processing sensor signals
by DNNs to classify PD motor disorders is unique,
although DNNs have been used effectively in neural
prosthetics34 and motor control studies.35 Another
unique aspect of our approach was to configure the
DNNs so that each limb was separately assigned a
classifier that operated independently from the other
classifiers. The benefits of this approach were most
apparent in our ability to track movement disorders
during unconstrained daily functional activities. De-
spite the overall success of achieving this goal, the
results must be considered an initial finding until fur-
ther development and testing on a larger patient popu-
lation are undertaken. We are actively investigating a
new procedure that will integrate the DNNs within a
larger artificial intelligence framework of our design,
referred to as integrated processing and understanding
of signals (IPUS),36 to provide a rule-based structure
that adaptively selects appropriate classifiers to further
resolve recognition challenges.29,37 Preliminary results
for identification of freezing29 and other gait abnor-
malities in PD27 using this procedure have been
encouraging.

Conclusions

This initial study demonstrated that a combined
approach of hybrid sensor data with dynamic neural
network processing achieved high temporal resolution
for identifying limb-specific changes in the severity of
tremor and dyskinesia during normal daily activities in
patients with PD. The value-added benefits of includ-
ing both sEMG and accelerometer data for identifying
tremor were described. The incorporation of DNN
analysis for capturing time-dependent changes enabled

TABLE 2. Summary of algorithm performance

Sensitivity Specificity Global error Local error

Severitya

Tremor
Mild 97.2% 97.6% 2.7% 1.4%
Moderate 95.2% 97.1% 3.9% 1.8%
Severe 96.3% 99.3% 2.2% 1.7%

Dyskinesia
Mild 93.9% 95.5% 5.3% 7.1%
Moderate 91.9% 94.6% 6.8% 4.9%
Severe 95.0% 98.6% 3.2% 4.1%

Overall mean (SD) 94.9%
(1.9%)

97.1%
(1.8%)

4.0%
(1.7%)

3.5%
(2.3%)

Mobility
Tremor (UE)

Sitting 95.1% 94.9% 4.9% 0.23%
Standing 88.5% 93.5% 8.9% 0.19%
Walking 96.5% 93.7% 4.9% 0.18%

Tremor (LE)b

Sitting 95.4% 89.6% 7.5% 3.20%
Standing 75.4% 95.8% 14.4% 4.95%

Overall mean (SD) 90.2%
(8.8%)

93.5%
(2.4%)

8.1%
(4.0%)

1.75%
(2.2%)

Dyskinesia (UE)
Sitting 89.5% 97.7% 6.4% 1.6%
Standing 92.0% 94.6% 6.7% 3.9%
Walking 99.3% 75.7% 12.5% 10.9%

Dyskinesia (LE)b

Sitting 85.3% 96.0% 9.3% 2.0%
Standing 92.3% 83.5% 12.1% 2.4%

Overall mean (SD) 91.7%
(5.1%)

89.5%
(9.5%)

9.4%
(2.9%)

4.2%
(3.9%)

Results are from a single sensor located on the symptomatic limb.
aSeverity results are for upper and lower extremities across all mobility
states. Local error was calculated based on local error rate> 50%, for con-
secutive 30-second intervals.
bTremor and dyskinesia in the lower extremity during walking was not
observable. UE, upper extremity; LE, lower extremity.
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us to achieve disorder recognition accuracy during
unconstrained daily activities comparable to that
achieved by others for less challenging standardized
activities.
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