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Kline JC, De Luca CJ. Error reduction in EMG signal decompo-
sition. J Neurophysiol 112: 2718–2728, 2014. First published Sep-
tember 10, 2014; doi:10.1152/jn.00724.2013.—Decomposition of the
electromyographic (EMG) signal into constituent action potentials
and the identification of individual firing instances of each motor unit
in the presence of ambient noise are inherently probabilistic processes,
whether performed manually or with automated algorithms. Conse-
quently, they are subject to errors. We set out to classify and reduce
these errors by analyzing 1,061 motor-unit action-potential trains
(MUAPTs), obtained by decomposing surface EMG (sEMG) signals
recorded during human voluntary contractions. Decomposition errors
were classified into two general categories: location errors represent-
ing variability in the temporal localization of each motor-unit firing
instance and identification errors consisting of falsely detected or
missed firing instances. To mitigate these errors, we developed an
error-reduction algorithm that combines multiple decomposition esti-
mates to determine a more probable estimate of motor-unit firing
instances with fewer errors. The performance of the algorithm is
governed by a trade-off between the yield of MUAPTs obtained above
a given accuracy level and the time required to perform the decom-
position. When applied to a set of sEMG signals synthesized from real
MUAPTs, the identification error was reduced by an average of
1.78%, improving the accuracy to 97.0%, and the location error was
reduced by an average of 1.66 ms. The error-reduction algorithm in
this study is not limited to any specific decomposition strategy.
Rather, we propose it be used for other decomposition methods,
especially when analyzing precise motor-unit firing instances, as
occurs when measuring synchronization.

surface EMG signal; decomposition; motor-unit firing instances; ac-
curacy; error reduction

OVER THE PAST FIVE DECADES, a variety of methods have been
used to extract individual motor-unit action potentials (MUAPs)
from electromyographic (EMG) signals. Manual decomposi-
tion techniques were the first methods used to extract the firing
instances of one or two MUAP trains (MUAPTs) by visual
inspection of the signal. Still used today, generally, these
methods are incapable of resolving MUAP superpositions that
occur in complex EMG signals. Therefore, manual decompo-
sition is, by necessity, limited to indwelling EMG signals from
low-force contractions, where few motor units are active. The
introduction of automated algorithms, using various machine-
learning processes, enabled the decomposition of indwelling
EMG signals having a more complex structure (Florestal et al.
2006; LeFever and De Luca 1982a, b; McGill et al. 2004;
Nawab et al. 2008). More recent enhancements allow for the

decomposition of complex surface EMG (sEMG) signals that
can identify the activity of superimposed MUAPs (De Luca et
al. 2006; Holobar and Zazula 2007; Kleine et al. 2007; Nawab
et al. 2010).

Regardless of the method used, decomposition of EMG
signals, containing the MUAPs of any number of motor units,
is a nontrivial task, with the task increasing in complexity as
the number of active motor units and the noise in the signal
increase. Even if the decomposition is performed manually,
the low contraction levels used in such studies often contain
some superposition occurrences, causing difficulty in re-
solving precise firing instances. As a consequence of the
variability in decomposition results, any decomposition pro-
cess (automatic or manual) provides only probabilistic es-
timates of physiological motor-unit firing instances cor-
rupted by two types of decomposition errors: “Location
error” and “Identification error.”

Figure 1 shows an example of these error manifestations.
One type of error occurs when the firing instances of one
MUAP are either missed or falsely detected, due to confusion
with another MUAP of similar shape (Fig. 1A). These errors
are visible when a validation of the first decomposition is
performed, and false positives or false negatives occur for the
same motor unit. We refer to these as Identification errors.
These errors leave uncertain the actual identification of each
motor-unit firing instance and provide a measure of accuracy of
the decomposition procedure.

For each motor-unit firing instance found in the EMG signal,
the precise temporal localization of the MUAP is subject to
variability. This variability gives rise to a second type of error
that we refer to as Location error. For manual decomposition
methods, noise embedded in the EMG signal can mask the
precise location of each action-potential peak and therefore, the
location of each firing instance. Whereas the resultant location
error may be small when a single motor unit is present, the
error increases with the superposition of two or more action
potentials and increases further with a decreasing signal-to-
noise ratio, as shown in Fig. 1B. For automated methods,
decomposition of complex shapes from multiple superimposed
action potentials can also result in location errors, as shown in
Fig. 1C. Small shifts in the location of relatively high-ampli-
tude MUAPs in the superposition subjugate relatively lower-
amplitude MUAPs to larger shifts in their precise location.

Although considerable attention has been given to the study
of identification errors, direct measurements of location errors
have not been considered in previous studies (Holobar et al.
2010; Kleine et al. 2008; Marateb et al. 2011). In addition to
the lack of a comprehensive evaluation of decomposition
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errors, no systematic method has ever been proposed to miti-
gate the effects of errors on the extracted motor-unit firing
instances. Instead, the majority of published studies resorts to
discarding potentially erroneous data and in so doing, limits
any analysis to sections of a select few MUAPTs.

Consequently, we set out to classify decomposition errors
and develop an algorithm that reduces errors and improves the
EMG signal-decomposition data. We studied errors made by
our decomposition EMG (dEMG) algorithms, described by De
Luca et al. (2006) and improved substantially by Nawab et al.
(2010). The accuracy of our dEMG algorithms has been
assessed using the decompose-synthesize-decompose-compare
(DSDC) validation, described by Nawab et al. (2010). The
efficacy of this validation approach has been questioned by
Farina and Enoka (2011). We and others responded with
evidential proof that the approach was efficacious and correct.
De Luca and Contessa (2012) provided empirical evidence that
the DSDC method is an unbiased method for measuring the
accuracy of our dEMG algorithms. Subsequently, independent
verification has been provided via three different methods. Hu
et al. (2013a, b) confirmed that the MUAPs identified by our
dEMG algorithms were similar in shape with those obtained by
trigger averaging the MUAP from the sEMG signal. In a
separate test, Hu et al. (2013a, c) demonstrated that the firing
instances obtained by our dEMG algorithms were resolved
accurately within 0.6–2.0 ms, and Hu et al. (2013b, 2014)
provided visual verification that our dEMG algorithms yield
MUAPTs with an average accuracy of 95%.

In the present study, we applied the DSDC validation to
measure the errors made by our dEMG algorithms on a set of
1,061 MUAPTs. Although identification errors have been mea-
sured and reported in our previous publications, we expanded
the error analysis in this study to include a thorough classifi-
cation of location errors. After the measuring of decomposition
errors, we proceeded to derive a new algorithm, capable of
mitigating the errors and improving the decomposition result.
The error-reduction algorithm combined multiple estimates of
a recorded sEMG decomposition to obtain a more probable
estimate of motor-unit firing instances with fewer errors. We
evaluated the error-reduction algorithm using a set of sEMG
signals synthesized from known MUAPTs and known firing
instances and found that the decomposition errors were re-
duced effectively.

METHODS

Subjects. Six healthy subjects, four men and two women, each with
no known history of neuromuscular disorders, volunteered for the
study. The average subject age was 21.3 � 0.8 yr and ranged from 21
to 23 yr. Before participating in the study, all subjects read, indicated
they understood, and signed a consent form, approved by the Institu-
tional Review Board at Boston University.

Force measurements. All experiments were performed on the first
dorsal interosseous (FDI) muscle of the hand and the vastus lateralis
(VL) muscle of the lower limb. Subjects were seated in a specially
constructed chair apparatus designed to isolate movement for target
muscles of this study. For the VL contractions, the chair restrained hip
movement and immobilized the subject’s leg at a knee angle of 60°
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Fig. 1. Pictorial representation of errors made
during electromyographic (EMG) decomposi-
tion. A: when the firing instances from 2 simi-
larly shaped motor-unit action potentials (MUAPs)
occur amongst certain superpositions or noise
manifestations, mistakes are likely to occur in
the form of misidentifications between the fir-
ing instances of 2 motor units. These “Identi-
fication errors” consist of either falsely detected
or missed firing instances and are revealed by
validation of the decomposition. B: any decom-
position technique is also subject to “Location
errors.” During manual decomposition, super-
position of noise with even a single active
MUAP (MU) can blur the precise location of
the action-potential peak, giving rise to location
variability during template matching, measured
as a location error. The location error is mag-
nified when a manual template-matching algo-
rithm is applied to a superposition occurrence
of 2 MUAPs, a common happening during
even lowest-level contractions. C: in automated
decomposition, location errors occur, due to the
frequent incidence of complex superpositions
in the EMG signal, the resolution of which
gives rise to shifts in the precise location of
MUAPs, often caused by distortions of the
shapes remaining within the superposition dur-
ing the subtraction process. Any noise in the
EMG signal would only render more difficult
the determination of the precise temporal loca-
tion of each firing instance. sEMG, surface
EMG.
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flexion. For the FDI, surface restraints were used to immobilize the
subject’s forearm and restrain the wrist and fingers. Isometric force
was measured during leg extension and index-finger abduction via
load cells attached to metal arms of each restraint. The force was
band-pass filtered from 0 to 450 Hz and digitized at 20 kHz. Target
trajectories and visual feedback of the isometric contraction force
were displayed on a computer monitor for the subject.

EMG signal recording. The sEMG signals were recorded with a
sensor containing five cylindrical pins, 0.5 mm in diameter, located at
the corners and in the middle of a 5 � 5-mm square. Further details
may be found in De Luca et al. (2006). The output of the sensor was
connected to an EMG amplifier (a Bagnoli 16-channel system; Delsys,
Natick, MA). Before application of the sensor to the subject, the
surface of the skin was prepared by removing hair with a razor (which
we no longer find necessary) and dead skin with adhesive tape,
followed by sterilization of the skin with an alcohol cloth. After skin
preparation, the surface sensor was placed on the skin over the center
of the muscle belly. Signals from the four pairs of electrodes in the
sensor were differentially amplified and filtered with a bandwidth of
20–450 Hz. The signals were sampled at 20 kHz and stored in a
computer hard drive for offline data analysis.

Experimental protocol. Before recording data, subjects were
trained on the protocol by practicing force tracking and maximal
voluntary contractions (MVCs). Following training, we measured the
MVC force by three brief MVCs, each with a 3-s duration, separated
by a rest period of 3 min. The MVC of greatest value was chosen to
normalize the force level of all following contractions for later
comparison across subjects. Subjects proceeded to track a series of
target trapezoidal trajectories displayed on the computer screen with
the output of their force sensor. For the FDI muscle, trajectories
increased at a rate of 10% MVC/s; were sustained at 5, 10, 15, 20, 25,
or 30% MVC for 35 s; and were then decreased back to zero at 10%
MVC/s. For the VL muscle, trajectories again increased at a rate of
10% MVC/s; were sustained at 20, 25, 30, 35, 40, or 50% MVC for
35 s; and were then decreased back to zero at 10% MVC/s. At least
5 min of rest was allotted between trials.

EMG signal decomposition. The sEMG signals recorded from four
channels of the sensor were decomposed into their constituent
MUAPTs using the dEMG algorithms described by De Luca et al.
(2006) and Nawab et al. (2010). The decomposition of the complex
sEMG signal into MUAPs is a computationally expensive procedure
in a multidimensional constraint space. To mitigate this computational
challenge, we designed special artificial intelligence architecture to
restrict the number of constraint combination searches by dividing the
decomposition into a series of stages. Each processing stage addressed
a fraction of the constraints of the decomposition problem. These
stages did not use any assumptions of motor-unit firing properties.
Instead, the algorithm generated MUAP candidates for given electri-
cal events in the sEMG signal, only on the basis of the characteristics
of the MUAP waveforms. In rare cases, when two different MUAP
templates (typically among the smallest-sized templates with rela-
tively “flat” shapes), as well as their slightly misaligned superposition,
accounted equally well for a local shape within an electrical event, the
algorithm used the principle of minimization of the interpulse interval
coefficient of variation of each of the involved units to resolve the
ambiguity. In our experience with the dEMG algorithm applied to real
sEMG signals, �1% of the firing instances within a decomposition
result was ever involved in this type of ambiguity resolution. For a
more detailed description of the algorithm’s functionality, refer to
Nawab et al. (2008, 2010). The output of the algorithm provided the
firing instances of all MUAPs that could be identified by the algo-
rithm, a subset of the MUAPTs that contributes to the energy of the
sEMG signal. Any MUAPs or fragments of MUAPs that were not
identified consistently were allocated to a residual signal. For each
identified MUAP, the firing instance was taken as the time of the
greatest absolute value of the MUAP shape.

EMG validation. We implemented the DSDC validation to measure
the identification and the location errors. The identification errors,
made for all firing instances of each MUAPT, were classified by the
accuracy metric

Accuracy � 1 � Identification Errors � 1
Nerror

Ntruth
� 1 �

NFP � NFN

NTP � NTN
(1)

Specifically, the number of errors (Nerror) was evaluated as the sum
of the false-positive (NFP) and false-negative (NFN) firing instances
detected. The number of true firing instances, or Ntruth, was quantified
as the number of true positives (NTP), or known firing instances, plus
the number of true negatives (NTN), or regions in the known MUAPTs
containing no firing instances [see Appendix 1 in De Luca and
Contessa (2012)].

The location errors were measured from firing instances that were
identified successfully but with slight variability in their temporal
location. Location errors were computed for all motor-unit firing
instances as

�i,j � decomposedi,j � knowni,j (2)

where knowni,j is the known jth firing instance of the ith MUAPT, and
decomposedi,j is the jth firing instance of the ith MUAPT decomposed
during the validation process. The location errors for each MUAPT
were binned in histograms for further analysis. We quantified the total
amount of location error for each MUAPT as

AM�Location Error�i �
1

n� j�1
n ��i,j� (3)

where AM{Location Error}i is the average magnitude of the location
error for all n firing instances in the ith MUAPT.

Error-reduction algorithm. The basic concept of the error-reduc-
tion algorithm consisted of decomposing the recorded sEMG signal
into multiple estimates of the constituent MUAPTs and combining
these estimates to derive a new estimate with fewer and smaller
decomposition errors. To obtain multiple decomposition estimates, we
repeated a process of generating a randomized noise signal, adding the
noise to the recorded sEMG signal, and decomposing the resultant
signal. Examples of multiple decomposition estimates of the same
MUAPTs are denoted in Fig. 2. For each decomposition repetition, the
noise added to the sEMG signal was a random manifestation of
band-limited Gaussian noise equal in root mean square (RMS) to the
baseline noise in the recorded signal.

MUAPTs from different motor units were identified across the
decomposition estimates using a maximum likelihood estimator,
based on the maximum a posteriori probability classifier, first de-
scribed in LeFever and De Luca (1982a). In the current implementa-
tion for error reduction, the classifier remained agnostic to firing
statistics. Instead, MUAPTs, representing the activity of the same
motor units across the different decomposition estimates, were iden-
tified, based solely on the characteristics of the MUAP waveforms
[see Nawab et al. (2008) for more details]. The firing instances of
several estimates of one MUAPT are shown in Fig. 3. For each
MUAPT, all estimates of the same motor-unit firing instance were
assigned an index j. The index of each firing instance was determined
based on the temporal location of the firing instances from different
decomposition estimates using a “nearest-neighbor” classifier. Specif-
ically, firing instances from different decomposition estimates were
given the same index j, if and only if the following two criteria were
met: 1) the firing instance from a first decomposition estimate had to
be the closest firing instance to the firing instance obtained from a
second decomposition estimate, and 2) the firing instance from the
second decomposition estimate had to be the closest firing instance to
the firing instance obtained from the first decomposition estimate. The
nearest-neighbor algorithm was repeated until all decomposition es-
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timates of the same motor-unit firing instance were assigned the
proper index.

The heart of the error-reduction algorithm consisted of decision
criteria designed to establish the most probable identification and
location of each motor-unit firing instance. For the identification
decision, positive or negative identification of each firing instance was
determined based on a 50% decision criteria: if �50% of the decom-

position estimates identified the firing instance, then it was regarded as
a positive identification; otherwise, it was considered a negative
identification. For example, the firing instance, assigned t4 in Fig. 3,
was identified in only one of the three decomposition estimates and
was therefore marked as a negative identification. All positive iden-
tifications of firing instances were then applied to the location decision
stage of error reduction. The location decision provided a new firing

Error Reduction Procedure

Step 1: Add Random
Gaussian Noise +

Step 4: Combine multiple decomposition 
estimates to derive the most 
probable estimate of MUAPTs 
with fewer errors.

Multiple Estimates of MUAPTs

dEstn

MU1

MU2

MUk

...

dEst1

dEst2

MU1

MU2

MUk

MU1

MU2

MUk

MUAPTs

MU1

MU2

MUk

...

Σ
sEMG Signal

Step 2: Decompose the signal to 
obtain estimate of MUAPTs

Step 3: Repeat n times

Fig. 2. A diagrammatic depiction of the pro-
cess used to generate multiple decomposition
estimates for error reduction. During volun-
tary contraction, MUAP trains (MUAPTs),
denoted MUk, were recorded in the sEMG
signal. The signal was combined with ran-
domized Gaussian noise and subsequently
decomposed to obtain an estimate of the
MUAPTs, denoted dEsti. The process of ran-
domizing the noise, adding it to the signal,
and decomposing the signal was repeated n
times to obtain n slightly different estimates
of the MUAPTs. These decomposition esti-
mates were then combined to obtain a more
probable estimate of the MUAPTs within the
synthesized signal.

...

Firing
Identification
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Firing Location
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Error 
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Fig. 3. The specific decision stages used in the
error-reduction algorithm. Multiple decomposition
estimates, denoted dEsti, were obtained using the
procedure illustrated in Fig. 2. Three example de-
composition estimates of the same MUAPT are
shown. Firing instances from different decomposi-
tion estimates that represented the same motor-unit
firing instance were assigned an index j. To evaluate
the firing identification, each jth firing instance was
regarded as a positive identification, if and only if
the firing instance was identified in �50% of the ith

decomposition trials, dEsti,j. For all positive identi-
fications of firing instances, the location of the firing
instance was decided as the 1st firing instance �
median temporal location of all estimates of the
firing instance, t1...n,j. The final output of the error
reduction provided a more probable estimate of the
identification and location of each motor-unit firing
instance.
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instance equal to the first estimate of the firing instance greater than or
equal to the median temporal location of all estimates of the firing
instance. These new firing instances provided the final output of the
error-reduction algorithm.

Evaluating error reduction. We evaluated the efficacy of the
error-reduction algorithm using a process based on our DSDC vali-
dation approach. Multiple decomposition estimates were generated
using the same procedure described in the error-reduction algorithm
above, with two key differences.

1) Instead of using a recorded sEMG signal, we evaluated the error
reduction by decomposing a synthesized sEMG signal. The synthe-
sized signal was comprised of MUAPTs obtained from the decompo-
sition of the recorded sEMG signal.

2) The noise added to the synthesized sEMG signal was similarly,
randomly generated, band-limited Gaussian noise, but it was equal in
RMS to the residual of the decomposition of the recorded sEMG
signal (see EMG signal decomposition above).

As shown in Fig. 2, by repeating the steps of generating random
noise, adding the noise to the synthesized signal, and decomposing the
signal, we obtained multiple estimates of the MUAPTs.

With the use of the steps depicted in Fig. 3, a new estimate of the
MUAPTs, with fewer decomposition errors with respect to the syn-
thesized signal, was obtained by processing multiple decomposition
estimates of the same MUAPTs. The new estimates of the MUAPTs,
obtained from error reduction, were then compared with the actual
MUAPTs known within the synthesized signal to evaluate the efficacy
of the error-reduction process. MUAPTs obtained from error reduc-
tion were matched with the corresponding MUAPTs known within the
synthesized signal by evaluating the similarity between the character-
istic MUAP shapes using a maximum likelihood estimator. For each
matched MUAPT, we paired the estimated motor-unit firing instances
with the corresponding firing instances known within the synthesized
signal, using a nearest-neighbor classifier. Any time difference be-
tween paired firing instances provided the location error, and location
errors were computed for all matched firing instances using Eq. 2 and
quantified for each MUAPT using Eq. 3. All unmatched firing in-
stances were considered identification errors. We quantified the total
amount of identification errors made for all firing instances of each
MUAPT using the accuracy metric described in Eq. 1. Identification
and location errors were measured after implementing the error-
reduction algorithm with three to as many as 39 synthesized signal-
decomposition estimates. This range of estimates was determined
sufficient to reveal any reduction of errors while reducing the imprac-
tical computational expense of the procedure. The efficacy of the
error-reduction algorithm was indicated by the improvements in
accuracy (1.0 � proportion of identification errors) and reduction in
location error.

RESULTS

We collected and analyzed a data set from 36 voluntary
isometric contractions, a subset of the 144 voluntary isometric
contractions reported in the accompanying study by De Luca
and Kline (2014). A total of 1,061 identified MUAPTs, con-
taining 784,767 firing instances, was studied; 509,404 firing
instances from 616 motor units were from the VL contractions,
and 275,363 firing instances from 445 motor units were from
the FDI contractions. The number of MUAPTs obtained from
decomposition of the sEMG signal recorded during each con-
traction ranged from 17 to 51, with an average of 29. No
correlations were found between the number of MUAPTs
obtained and the force level or subject of each contraction.
(Note that some of the identified MUAPTs may have been
repetitions of the same motor unit observed in different con-
tractions. Nonetheless, each identified MUAPT presented a
unique challenge to the dEMG algorithms, due to the different

interaction of its differently represented action-potential shape
and occurrences of superpositions, as each was encountered
throughout the contraction.)

Location errors. With the use of the DSDC validation, we
computed location errors of the firing instances obtained from
decomposition. Four representative histograms of the magni-
tude of location errors are shown in Fig. 4 for two FDI and two
VL MUAPTs. For each muscle, one histogram (Fig. 4, A and
C) presents a relatively narrow range of location errors, and
another (Fig. 4, B and D) presents a relatively wide range of
location errors. These representative histograms exemplified
the typical variability of the location-error data, measured from
different MUAPTs. All histograms manifested a higher density
of location errors near 0 ms, with progressively fewer errors at
relatively greater temporal latencies. A qualitative comparison
reveals no apparent distinction between location-error data
from FDI contractions and VL contractions.

Error-reduction results. Error reduction was assessed us-
ing a set of synthesized signals with known firing instances.
Figure 5 exemplifies changes in the accuracy (1.0 � pro-
portion of identification errors) and location-error measure-
ments, quantified for the firing instances of each MUAPT as
the AM{Location Error}. Both error metrics are plotted as a
function of the number of synthesized signal-decomposition
estimates. Shown are errors from individual decomposition
estimates of the synthesized sEMG signal and errors measured
after combining the decomposition estimates in the error-
reduction algorithm to form a new estimate. One motor unit
with high initial accuracy and low initial AM{Location Error}
is shown in Fig. 5, A and C, and another motor unit with low
initial accuracy and high initial AM{Location Error} is shown
in Fig. 5, B and D, respectively.

In all four plots, the combination of the decomposition
estimates in the error-reduction algorithm resulted in lesser
identification and location errors than were observed amongst
the individual estimates. For instance, in one MUAPT with
relatively high initial accuracy, the individual decomposition
estimates varied between 97% and 98%, whereas error reduc-
tion improved the accuracy to �99%. For the same MUAPT,
individual decomposition estimates produced AM{Location
Error} values that varied between 3.8 ms and 4.5 ms, whereas
error reduction decreased the AM{Location Error} of the firing
instances to nearly 2.2 ms. Similar results are shown for the
MUAPT, with a relatively low initial accuracy. Individual
decomposition estimates varied in accuracy from 89.4% to
94.3% and in AM{Location Error} from 7.2 ms to 10.0 ms.
However, error reduction for this MUAPT improved the
accuracy to �97% and reduced the AM{Location Error} to
�6.1 ms.

A summary of the reduction in decomposition errors for the
entire set of 1,061 MUAPTs is provided in Fig. 6 and Table 1.
Histograms of the accuracy, location error, and mean firing rate
are shown for the decomposition estimates before and after
error reduction. Error reduction improved the average accuracy
of all MUAPTs from 95.3% to 97.0% and improved the lower
95% confidence interval of the accuracy from 81.9% to 93.5%
(compare Fig. 6, A with C). For location-error data, error
reduction improved the AM{Location Error} from 5.10 ms to
3.44 ms on average (compare Fig. 6, B with D). Overall,
improvements in accuracy were observed in 96.1% of
MUAPTs, whereas reductions in AM{Location Error} were
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seen in 100% of MUAPTs. Yet, on average, the mean firing
rates of motor units remained largely unaffected by the error-
reduction process. These data demonstrate that the error-reduc-
tion algorithm identified and mitigated decomposition errors
successfully.

To study the performance characteristics of the error-reduc-
tion algorithm, we evaluated the percent of total MUAPTs
found above different accuracy thresholds as a function of the
number of estimates and the total time used for error reduction
(Fig. 7). The time to decompose the different numbers of
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Fig. 5. The errors measured from multiple
decompositions of synthesized sEMG sig-
nals are plotted as a function of the decom-
position estimate number. Points plotted as
“x” indicate errors measured from each of
the individual, synthesized signal-decompo-
sition estimates; points plotted as “o” indi-
cate the errors measured from the output of
error reduction, using the given number of
synthesized signal-decomposition estimates.
Accuracy data (1.0 � proportion of identifi-
cation errors) are plotted for (A) 1 MUAPT
with a relatively high initial accuracy and (B)
1 with a relatively low initial accuracy. The
average magnitude of the location-error
(AM{Location Error}) data is plotted for the
same MUAPTs: (C) 1 with a relatively low
initial AM{Location Error} and (D) another
with a relatively high initial AM{Location
Error}. The individual decomposition estimates
manifested accuracy and AM{Location Error}
values that were minimally distributed
around a central mean. However, the combi-
nation of the individual estimates in the er-
ror-reduction algorithm produced new esti-
mates with increased accuracy and decreased
location-error values.
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estimates was based on a personal computer with an Intel Core
i5-2500 3.3 GHz processor and 4 gigabytes of memory, run-
ning a Windows 7 Enterprise 64-bit operating system. The
exact computational time required to evaluate specific numbers
of estimates for error reduction will vary with the hardware and
software capabilities of different computers. Three different
accuracy thresholds (95, 97, and 98%) are shown in Fig. 7, top.
Generally, the percentage of MUAPTs above each accuracy
threshold increased with an increasing number of estimates.
For example, �20% of 1,061 MUAPTs were assessed above
97% accuracy, before mitigating errors. However, error reduc-
tion, using just nine estimates, increased the yield above the
97% accuracy threshold to �50%. For all accuracy thresholds,
the yield of MUAPTs levels out with increasing numbers of
estimates.

Similar results are shown for the percentage of MUAPTs
obtained below a given AM{Location Error} threshold, also
plotted as a function of the number of estimates and the total
time required for error reduction. Three different AM{Location

Error} thresholds (5, 4, and 3 ms) are shown in Fig. 7, bottom.
The percentage of MUAPTs below each AM{Location Error}
threshold increased with an increasing number of estimates
used for error reduction. For example, the use of nine estimates
for error reduction increased the yield of MUAPTs with �4 ms
of AM{Location Error} from 20% to �60%. Similar to the
accuracy data at all AM{Location Error} thresholds, the yield
of MUAPTs levels out with increasing numbers of estimates.

DISCUSSION

The error-reduction algorithm improved the estimates of the
firing instances by combining multiple estimates obtained from
the decomposition of the same sEMG signal with additive
noise. On average, the accuracy (1.0 � proportion of identifi-
cation errors) was improved in 96.1% of MUAPTs, and the
AM{Location Error} was reduced in 100% of MUAPTs tested
(see Table 1). As expected, the degree of error reduction
increased with the number of decompositions performed and
the consequential processing time. The operating point of the
algorithm can be set to suit the requisite average accuracy
level. The greater the error reduction required, the greater the
number of iterations necessary and the longer the computa-
tional time. The trade-off among these variables may be seen in
Fig. 7.

Relevance of error reduction. Any measurements of the
properties of individual firing instances, such as synchroniza-
tion or firing instance statistics, would be distorted by the
errors inherent in any decomposition procedure. Whereas for
the analysis of average motor-unit firing properties, such as the
mean firing rates, the errors made by our dEMG algorithms
minimally affect the values, because the errors in different
firing instances are, in large part, independent of each other.
Thus motor-unit firing instances are equally likely to have
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Fig. 6. Histograms showing distributions of
the (A and D) accuracy (1.0 � proportion of
identification errors), (B and E) AM{Location
Error}, and (C and F) mean firing rate of
motor units computed from (A–C) a single
decomposition estimate of the synthesized signals
and (D–F) the result of error reduction using 39
synthesized signal-decomposition estimates.
On average, the error-reduction algorithm
improved the accuracy and reduced the loca-
tion-error values, whereas mean firing rates
remained largely unaffected. CI, confidence
interval; pps., pulses/s.

Table 1. Summary of the results from the error-reduction
algorithm

MUAPTs Mean � SD 95% CI

Accuracy
improvement 96.1% (1,020/1,061) 1.78 � 1.10% [0.05, 3.92]%

AM{Location Error}
reduction 100% (1,061/1,061) 1.66 � 0.62 ms [0.48, 2.87] ms

The improvements in accuracy (1.0 � proportion of identification errors)
and reduction in average magnitude of the location error (AM{Location
Error}), computed for our entire data set of 1,061 motor-unit action-potential
trains (MUAPTs), obtained from error reduction, using 39 synthesized signal-
decomposition estimates. Shown are the percentage of MUAPTs with fewer
decomposition errors, as well as the mean, SD, and 95% confidence interval
(CI) of the improvement in accuracy and reduction in AM{Location Error}.
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false-positive or false-negative identification errors, as well as
positive or negative location errors. Hence, as demonstrated by
Fig. 6, C and F, the mean firing rate remains, in large part,
immune to decomposition errors.

In the majority of previous studies, decomposition errors
typically have been addressed by discarding potentially erro-
neous data. For example, in their analysis of motor-unit syn-

chronization, Nordstrom et al. (1992) were unable to resolve
superposition occurrences in the EMG data, resulting in occa-
sional missed firing instances. They argued that missed firing
instances caused unusual and relatively high interpulse inter-
vals. Therefore, to address the errors, they discarded all firing
instances that produced interpulse intervals outside of an ex-
pected range. In spite of the obvious dangers associated with
data selectivity, this strategy has been adopted widely through-
out the synchronization literature (Dartnall et al. 2008; Hock-
ensmith et al. 2005; Keen et al. 2012; Keen and Fuglevand
2004), without ever accounting for the effects of discarding
data on subsequent measurements of synchronization.

The error-reduction algorithm is not limited to our dEMG
algorithms. It can be applied to any decomposition procedure
ranging from manual template-matching to automated meth-
ods. One example application could be for manual decompo-
sition using visual template-matching with multiple human
operators. After obtaining a first decomposition result, the
resultant MUAPTs could be summed together; combined with
randomly generated, band-limited Gaussian noise equal in
RMS to the residual of the first decomposition; and subse-
quently, decomposed by a different human operator. The rep-
etition of the synthesize-and-decompose steps across different
human operators would yield multiple estimates of the first
decomposition result. Such an implementation would allow for
a better understanding of the types of errors made by humans
during manual decomposition and the confidence with which
manual decomposition results can be reported. Data so pre-
sented would provide a more reliable basis for describing the
behavior of firing instances.

Assessment of errors in decomposition algorithms. Any
procedure, manual or automatic, used to decompose EMG
signals can only provide an estimate of the firing instances of
the MUAPs within the signal. The accuracy of the estimate is
affected by, among other factors, the complexity of the signal.
Hence, the degree of the accuracy will depend on the sound-
ness of the decomposition algorithm. In turn, the verification of
the accuracy of the decomposition relies on other procedures
and other algorithms. The quality and usefulness of these
procedures and algorithms will establish the validity of the
decomposition.

In this work, proof of the error-reduction algorithm relies on
the use of the DSDC validation method that we have described
in our previous work (De Luca and Contessa 2012; De Luca
and Nawab 2011; Nawab et al. 2010). Farina and Enoka (2011)
have questioned the validity of our DSDC method. Instead,
they rely on validating the accuracy of the decomposition by
using two alternative approaches: the two-source method and
the mathematically synthesized signal method. Both methods
were introduced and used by Mambrito and De Luca (1984),
but we now know that they are susceptible to several
drawbacks.

The two-source technique compares the MUAPTs of the
same motor unit obtained from decomposition of two EMG
signals recorded simultaneously with two sensors arranged in
near proximity. Although it has been applied by De Luca et al.
(2006), Holobar et al. (2009, 2012b, 2014), Hu et al. (2014),
and Marateb et al. (2011), the MUAPTs in common, found in
both sensor sources, are limited, typically ranging from one to
three (De Luca et al. 2006; Hu et al. 2014). Hence, the
accuracies of the rest of the MUAPTs, obtained from decom-
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Fig. 7. Results illustrating the trade-off between the time required to obtain the
specified number of decomposition estimates for error reduction and the
number of MUAPTs obtained (top) above a given accuracy (1.0 � proportion
of identification errors) threshold and (bottom) below a given AM{Location
Error} threshold. The percent of 1,061 MUAPTs processed by the error-
reduction algorithm is plotted for 3 different accuracy thresholds: 95% (solid
line), 97% (dotted line), and 98% (dot-dash line) and 3 different AM{Location
Error} thresholds: 5 ms (solid line), 4 ms (dotted line), and 3 ms (dot-dash
line). The number of estimates used for error reduction to obtain the specific
percentage of MUAPTs is plotted on the x-axis. Below the x-axis is another
axis displaying the average time required to decompose the specified number
of estimates. *The processing time is based on a Lenovo ThinkCentre com-
puter with an Intel Core i5-2500 3.3 GHz processor and 4 gigabytes of
memory, running a Windows 7 Enterprise 64-bit operating system, and
averages out to �30 min/estimate. Generally, more MUAPTs were obtained at
higher accuracy and lower AM{Location Error} levels only at the expense of
a greater processing time required to decompose additional estimates for error
reduction.
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position, remain untested, thereby requiring the application of
an additional validation technique.

The second validation approach consisted of using a math-
ematically synthesized signal with known MUAP shapes and
firing instances that are designated as the “truth.” The mathe-
matically synthesized signal is decomposed, and the accuracy
is evaluated by comparing the truth data with the decomposed
data. This method has been used by Farina and Merletti
(2001), Florestal et al. (2006), Holobar et al. (2009), and
Zennaro et al. (2003). Although this is a classical engineer-
ing approach, it has limitations for establishing the accuracy
of individual MUAPTs extracted from real sEMG signals.

1) It requires the presumption that the accuracy results
obtained under artificial conditions provide a faithful represen-
tation of the decomposition accuracy of a real sEMG signal.
This is a difficult point to establish.

2) It is a subjective approach, as the parameters of the firing
instances are constructed artificially, as was done by Holobar et
al. (2012a) and Holobar and Zazula (2007), or are derived from
a generic model, such as the model reported by Fuglevand et al.
(1993).

Recent attempts to overcome these drawbacks have led to
the development of two alternative validation methods. McGill
and Marateb (2011) and Parsaei and Stashuk (2013) estimated
the decomposition accuracy using statistical assumptions of
MUAPTs, including the following: 1) independent motor-unit
firing instances and 2) stationary MUAP shapes throughout the
duration of a contraction. However, dependence between
MUAPTs in the form of synchronized firing instances (Kamen
and Roy 2000; Keen et al. 2012; Nordstrom et al. 1992) and
correlated fluctuations in their firing rates, known as “common
drive” (De Luca and Erim 1994; De Luca et al. 1982; Farina et
al. 2014; Laine et al. 2013), are well documented in the
literature. With respect to the stationarity of the individual
MUAPTs, Bertram et al. (1995), De Luca (1984), Fortune and
Lowery (2009), Juel (1988), and Roy et al. (2007) have
observed that the shapes of individual MUAPs are not station-
ary throughout a contraction.

As an alternative, Farina et al. (2014) and Holobar et al.
(2014) reported that the accuracy of their convolution kernel
compensation (CKC) decomposition algorithm could be esti-
mated by the ratio of the MUAP signal energy to the energy of
the sEMG noise, a metric they referred to as the pulse-to-noise
ratio. However, in the contractions they studied, as much as
50% of the variability in the decomposition sensitivity (a
measure of some identification errors) was not correlated with
the pulse-to-noise ratio.

Our DSDC validation was designed to improve upon other
validation approaches. It has five elements that support its
reliability and soundness.

1) Our validation uses a synthesized sEMG signal, but
unlike the mathematically synthesized signal used by others,
ours is a realistic-synthesized sEMG signal that is of the same
class as the real sEMG signal. It is constructed with the MUAP
shapes and firing instances of the decomposed real sEMG
signal [see Nawab et al. (2010) for details].

2) Direct empirical tests have shown that our DSDC valida-
tion method does not produce biased results. De Luca and
Contessa (2012) demonstrated that the decomposition accuracy
measured using a signal synthesized from MUAPs with ran-
domized firing times was 95.4%, virtually identical to the

95.6% accuracy measured using a signal synthesized from the
same MUAPs but with firing times provided by our dEMG
algorithm.

3) The DSDC algorithm evaluates the accuracy and location
errors for a complete set of MUAPTs obtained from the
decomposition of a real sEMG signal. This compares with only
one to three MUAPTs typically assessed using the two-source
test.

4) Our validation algorithm matches firing instances ob-
tained from decomposition with firing instances known within
the synthesized signal, using a nearest-neighbor classifier in-
stead of an arbitrarily predetermined range of temporal vari-
ability. Therefore, we can obtain a reliable measure of the
location error with which the firing instances of each MUAPT
are resolved.

5) Our test is universal. It can be applied to a variety of
decomposition methods ranging from manual to automated
algorithms.

Therefore, the thorough assessment provided by the DSDC
validation, coupled with the extensive, independent verifica-
tion by Hu et al. (2013a, b, c, 2014), demonstrates that our
dEMG algorithms can extract the likely physiological MUAPs
from unique and complex superpositions throughout the sEMG
signal to the extent of the accuracy and location-error mea-
surements we report.

Consideration of location errors. The DSDC validation was
successful in measuring the location errors made by our dEMG
algorithms. It was tested on 784,767 motor-unit firing instances
from 36 contractions of the VL and FDI muscles. No apparent
difference existed between location-error histograms from
MUAPTs of FDI contractions and those of VL contractions
(Fig. 4). The location error was quantified for all firing in-
stances of each motor unit as the AM{Location Error} and
averaged 5.10 ms for all 1,061 validated MUAPTs, as shown in
Fig. 6B.

In the past, the problem of measuring the location error has
been given little consideration. Studies by Bigland-Ritchie et
al. (1983), Enoka et al. (1989), Keen and Fuglevand (2004),
and Nordstrom et al. (1992) provide no account of location
errors made during manual decomposition of indwelling EMG
signals. Even if only a single motor unit were active, the
superposition of an individual action potential with baseline
and ambient noise can yield uncertainty in the precise firing
instance on the order of a few milliseconds. For instance,
McGill et al. (2004) reported that motor-unit firing instances,
decomposed manually from indwelling EMG signals, can
range in temporal location by as much as 5 ms.

Studies using sEMG signal decomposition have also omitted
direct measurements of location errors. Instead, any motor-unit
firing instances validated outside of an arbitrary range of
temporal location have been considered as false detections by
Holobar et al. (2010), Kleine et al. (2008), and Marateb et al.
(2011). Although this approach has some usefulness for indi-
cating bounds of the temporal variability of some firing in-
stances, it provides no account of the actual MUAP location
errors made during decomposition. The approach can be prob-
lematic when firing instances outside of the temporal location
range are excluded from analysis [for example, see Marateb et
al. (2011)].

Consideration of identification errors. We quantified iden-
tification errors using an accuracy metric (1.0 � proportion of
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identification errors) for all firing instances of each MUAPT
(refer to Eq. 1). More than 66% of all 1,061 MUAPTs were
obtained with �95% accuracy. On average, 29 MUAPTs were
found in the sEMG signal from each contraction, and the
average accuracy was 95.3% (see Fig. 6A).

Other studies have addressed the issue of identification
errors using measures that favored expediency. For example,
Marateb et al. (2011) only measured errors from a portion of
motor-unit firing instances that was considered “highly confi-
dent” from each MUAPT. From this subset, they reported an
average accuracy of 91.5%. In another verification study,
Holobar et al. (2009) used a metric of sensitivity to quantify
identification errors made when decomposing a simulated
sEMG signal and reported values �95%. However, measures
of sensitivity only account for false-negative identification
errors. If false positives were also included in their calcula-
tions, then the actual accuracy of their decomposition results
would likely be lower. More recently, Holobar et al. (2012b)
quantified identification errors made by their CKC algorithm
using the two-source technique. The “rate of agreement” be-
tween the firing instances obtained from indwelling EMG
signals and those obtained by their CKC algorithm from sEMG
signals ranged from 89% to 100%. However, their analysis
only included a select subset of MUAPTs that they considered
had a “highly regular discharge pattern.” When a relatively
larger set of MUAPTs was assessed by Holobar et al. (2014),
the rate of agreement was as low as 50%.

In this work, we have derived an algorithm that reduces the
identification errors and the location errors of the firing in-
stances of MUAPs extracted from the sEMG signal by a
process of decomposition. The improved accuracy of the mea-
sured firing instances provides a more faithful expression of the
firing instances of MUAPs in the real sEMG signal.
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