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De Luca CJ, Kline JC. Statistically rigorous calculations do not
support common input and long-term synchronization of motor-unit
firings. J Neurophysiol 112: 2729–2744, 2014. First published Sep-
tember 10, 2014; doi:10.1152/jn.00725.2013.—Over the past four
decades, various methods have been implemented to measure syn-
chronization of motor-unit firings. In this work, we provide evidence
that prior reports of the existence of universal common inputs to all
motoneurons and the presence of long-term synchronization are mis-
leading, because they did not use sufficiently rigorous statistical tests
to detect synchronization. We developed a statistically based method
(SigMax) for computing synchronization and tested it with data from
17,736 motor-unit pairs containing 1,035,225 firing instances from the
first dorsal interosseous and vastus lateralis muscles—a data set one
order of magnitude greater than that reported in previous studies. Only
firing data, obtained from surface electromyographic signal decom-
position with �95% accuracy, were used in the study. The data were
not subjectively selected in any manner. Because of the size of our
data set and the statistical rigor inherent to SigMax, we have confi-
dence that the synchronization values that we calculated provide an
improved estimate of physiologically driven synchronization. Com-
pared with three other commonly used techniques, ours revealed three
types of discrepancies that result from failing to use sufficient statis-
tical tests necessary to detect synchronization. 1) On average, the
z-score method falsely detected synchronization at 16 separate laten-
cies in each motor-unit pair. 2) The cumulative sum method missed
one out of every four synchronization identifications found by Sig-
Max. 3) The common input assumption method identified synchroni-
zation from 100% of motor-unit pairs studied. SigMax revealed that
only 50% of motor-unit pairs actually manifested synchronization.

motor-unit firings; synchronization; common input; synchronization
methods

OVER THE PAST FOUR DECADES, measurements of synchronization
of motor-unit firing instances have been used to infer the
existence of common presynaptic inputs to motoneurons. Typ-
ically, these measurements have been made from cross-corre-
lation histograms, calculated between the firing instances of
paired motor-unit action-potential trains (MUAPTs), as de-
scribed by Perkel et al. (1967b), a work that has provided the
foundation of all subsequent synchronization measurement
techniques. By detecting peaks in the cross-correlation histo-
gram, McIsaac and Fuglevand (2007), Nordstrom et al. (1992),
and Sears and Stagg (1976) identified firing instances, sepa-
rated by a fixed latency, that occurred more often than would

be expected by chance. They reported that these peaks indi-
cated the presence of synchronization that resulted from com-
mon presynaptic inputs shared by the motoneurons, but it had
been demonstrated previously by Moore et al. (1970) and
Perkel et al. (1967a, b) that cross-correlation peaks could also
result from moderately nonstationary firing trains, as well as
from refractoriness inherent to each neuron. Therefore, the
detection of peaks in the cross-correlation histogram alone was
known to be insufficient proof that motor-unit firing instances
are synchronized occasionally as a result of common inputs.
For this reason, preliminary statistical tests are essential to
mitigate the influence of moderate nonstationarities and refrac-
toriness before assessing the degree of synchronization be-
tween motor units. However, virtually all synchronization-
detection methods have not considered these tests and instead,
have applied assumptions or approximations that remain to be
proven by empirical data. Indeed, Perkel et al. (1967b) cau-
tioned that even the most basic statistical assumptions can
result in false conclusions from the cross-correlation data, such
as false detections of synchronization.

The cumulative sum (cusum) detection method, or cusum
technique, is one approach commonly used to detect synchro-
nization. This method was originally applied to peristimulus
time histograms by Ellaway (1978) to detect changes in motor-
unit mean firing rates in response to applied stimuli. Later,
studies by Adams et al. (1989), Connell et al. (1986), and Keen
and Fuglevand (2004) used the cusum method to identify
deviations in the mean value of bin amplitudes from the
cross-correlation histogram. These works proposed, but did not
prove, that a change in the mean value of the histogram,
beyond a preset threshold, was indicative of synchronization.
To our knowledge, no one has documented a correlation
between changes in the mean value of the cross-correlation
histogram and the relatively high-density regions in the histo-
gram that could result from synchronized motor-unit firing
instances. Hence, the robustness of the cusum detection
method against erroneous detections of synchronization is yet
to be established.

After identifying the location of a synchronization peak,
many studies rely on the z-score synchronization detection
method to compute the statistical significance of the synchro-
nization peak (Sears and Stagg 1976; Wiegner and Wierzbicka
1987). Use of the z-score has been justified by the assumption
that bin amplitudes in the cross-correlation histogram of firing
instances can be approximated by a normal distribution. Sears
and Stagg (1976) and Wiegner and Wierzbicka (1987) ad-
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vanced this notion by proposing that the Poisson statistics of
neuron-firing instances, reported by Cox and Smith (1954),
could be approximated with normal statistics. Although normal
statistics may describe the firing instances of some neurons, the
actual statistics that describe motoneuron firing instances re-
main disputed (Clamann 1969; De Luca and Forrest 1973;
Lippold et al. 1960; Person and Kudina 1972). Nonetheless,
studies by Keen et al. (2012), McIsaac and Fuglevand (2007),
and Nordstrom et al. (1990) have not considered empirical
reports of non-normal motoneuron-firing statistics and instead,
applied the z-score to detect synchronization.

Perkel et al. (1967b) illustrated the inadequacy of the z-score
method, when they noted that the variance of bin amplitudes in
the cross-correlation histogram is greater than that predicted by
normal statistics. Specifically, refractoriness inherent to the
motoneuron-firing process induces dependence between adja-
cent bins in the histogram. As a result, bins with relatively high
numbers of occurrences are more likely to be followed by bins
with relatively low numbers of occurrences. They cautioned
that failure to account for the subsequently large variance of
bin amplitudes “can lead to false attributions of dependence to
cells that are, in fact, firing independently.” In spite of this
warning, normal approximations of the cross-correlation his-
togram bin amplitudes have been used frequently to implement
the z-score synchronization detection method.

Even when a statistically significant synchronization peak is
not detected in the cross-correlation histogram, some studies
nevertheless report the degree of synchronization within a
fixed, 11-ms time duration, centered at 0 ms latency (Dartnall
et al. 2008; Keen and Fuglevand 2004; Semmler and Nord-
strom 1995). This method is based on the notion that common
inputs produce synchronized firing instances among all pairs of
motoneurons. We refer to this practice as the common input
assumption synchronization detection method. It raises three
concerns.

1) It is a subjective approach. The method assumes that
synchronization occurs within �5.5 ms, centered at a 0-ms
latency, even though studies by Datta and Stephens (1990), De
Luca et al. (1993), Kirkwood et al. (1982), Schmied et al.
(1993), and Semmler and Nordstrom (1995) have demon-
strated that synchronization peaks in the cross-correlation his-
togram exist over latencies spanning �20 ms, with peak widths
ranging from 6 to 40 ms. In fact, differences in motoneuron
conduction velocities and innervation locations alone could
easily produce synchronization latencies as great as 12 ms
between motor units from the first dorsal interosseous (FDI)
muscle, as shown by Andreassen and Arendt-Nielsen (1987),
Dengler et al. (1988), and Saitou et al. (2000).

2) The common input assumption synchronization detection
method does not apply the mathematically rigorous and em-
pirically tested results of Perkel et al. (1967b), warning that
false conjectures of neuron connectivity can arise from com-
putations that lack a sufficient statistical test for dependent
firing behavior.

3) The approach occasionally produces negative values of
synchronization (Nordstrom et al. 1992), the meaning of which
is unclear.

To mitigate these shortcomings, we set out to design an
improved approach that is not subject to the drawbacks indi-
cated above. Our statistically based synchronization detection
method, which we will refer to as the SigMax detection

method, is based on a previous synchronization method devel-
oped by De Luca et al. (1993).

Importantly, SigMax does not rely on the assumption that
synchronization exists amongst all pairs of motoneurons, and it
does not depend on the underlying distribution of the firing
instances from each motor unit. The SigMax method is com-
prised of three tests.

1) Test for statistically significant nonstationarities. The
limitation of the analysis of synchronization to pairs of station-
ary MUAPTs is necessary to ensure that synchronization mea-
surements are not biased by moderately nonstationary firing
behavior.

2) Test for statistically significant dependent firing instances.
The dependence test is applied to pairs of stationary MUAPTs.
The test is robust to false detections of synchronization that
could result from motoneuron refractoriness.

3) Test for the most statistically significant peak in the
cross-correlation data. Only pairs of stationary MUAPTs with
dependent firing instances are tested. The detected peak pro-
vides the latency, peak width, and magnitude of synchroniza-
tion between the MUAPTs.

Synchronization was measured using the SigMax detec-
tion method and was compared with synchronization calcu-
lated by the z-score detection method, the cusum detection
method, and the common input assumption detection
method. Our analysis demonstrated that these previously
used synchronization methods are subject to additional de-
tections, missed observations, and disparate estimation of
synchronization between MUAPTs.

METHODS

Experimental Design and Protocol

The experimental design and protocol implemented in this study
are described in the accompanying report by Kline and De Luca
(2014) and will be summarized here. Six healthy subjects, four men
and two women, ages ranging from 21 to 23 yr, all with no known
history of neuromuscular disorders, volunteered for the study. Before
participating, all subjects read, indicated they understood, and signed
a consent form, approved by the Institutional Review Board at Boston
University. All experiments were performed on the FDI muscle of the
hand and the vastus lateralis (VL) muscle of the lower limb. Isometric
force was measured during index-finger abduction and leg extension
via load cells. Target trajectories and visual feedback of the isometric
contraction force were displayed for the subject on a computer
monitor.

The surface electromyographic (sEMG) signals were recorded with
a five-pin sensor, described previously in De Luca et al. (2006). The
surface sensor was placed on the skin over the center of the muscle
belly. Signals from the four pairs of electrodes in the sensor were
differentially amplified and filtered with a bandwidth of 20–450 Hz.
The signals were sampled at 20 kHz and stored in computer memory
for offline data analysis. Before recording data, we measured the
maximal voluntary contraction (MVC) force by three brief maximal
contractions, each with a duration of 3 s, separated by a rest period of
3 min. The MVC of greatest value was chosen to normalize the force
level of all following contractions for later comparison across sub-
jects. Subjects proceeded to track a series of target trapezoidal
trajectories displayed on the computer screen with the output of the
force sensor. For the FDI muscle, trajectories increased at a rate of
10% MVC/s; were sustained at 5, 10, 15, 20, 25, or 30% MVC for 35
s; and were then decreased back to zero at 10% MVC/s. For the VL
muscle, trajectories again increased at a rate of 10% MVC/s; were
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sustained at 20, 25, 30, 35, 40, or 50% MVC for 35 s; and were then
decreased back to zero at 10% MVC/s. The recorded force output was
high-pass filtered from 0 to 450 Hz, digitized at 20 kHz, and stored in
computer memory for offline data analysis. At least 5 min of rest was
allotted between contractions.

EMG Signal Decomposition and Error Reduction

The sEMG signals from four channels of the decomposition EMG
(dEMG) sensor were decomposed into their constituent MUAPTs,
using the dEMG algorithms described by De Luca et al. (2006),
substantially improved in Nawab et al. (2010), and independently
verified with three different methods, including direct visual compar-
ison, by Hu et al. (2013a, b, c, 2014). The output of the algorithm
provided the firing instances of all MUAPTs obtained from the
decomposition. Each firing instance, as measured by the algorithm,
was defined by the time of the greatest absolute value of the action
potential.

The occasional errors made by our sEMG signal decomposition
algorithm were measured using the decompose-synthesize-decom-
pose-compare validation method, described by Nawab et al. (2010).
These errors were then mitigated using the error-reduction technique,
described in the accompanying report by Kline and De Luca (2014).
In brief, we obtained multiple independent decomposition estimates,
each from the sEMG signal after adding Gaussian white noise, equal
in root mean square to the baseline noise of the sEMG signal. These
estimates were then applied to our error-reduction algorithm to pro-
duce a new, more probable estimate of the MUAPTs. We imple-
mented the error-reduction procedure using 30 decomposition esti-
mates for each contraction. Only MUAPTs obtained from decompo-
sition with accuracy �95% were retained for further analysis.

SigMax Statistical Synchronization Computations

All computations were performed on a 25-s epoch of sEMG signal,
recorded during a constant force isometric contraction. Our SigMax
detection method used three statistical tests to detect and measure
synchronization.

Test for statistically significant nonstationarities. We implemented
the now widely used Kwiatkowski, Philips, Schmidt, and Shin (KPSS)
test to detect statistically significant, nonstationary MUAPTs (Kwiat-
kowski et al. 1992). Details of the test are provided in step 1 of
APPENDIX. Because moderate nonstationarities could alter the detection
and estimation of dependent firing instances from the cross-correla-
tion data (Moore et al. 1970), it was necessary to perform our
synchronization calculations only on stationary MUAPTs.

Test for statistically significant dependent firing instances. Depen-
dence was assessed from the cumulative distribution of the cross-

correlations, measured using the recurrence time analysis, described
previously by Perkel et al. (1967b), and depicted in Fig. 1. For each
pair of MUAPTs, a reference and alternate MAUPT were assigned,
with the reference MUAPT having fewer firing instances. Forward
and backward recurrence times were measured as the latency between
each firing instance of the reference MUAPT and forward and back-
ward firing instance of the alternate MUAPT, denoted by tf and tb,
respectively. Different orders of recurrence times were computed,
such that the ith order recurrence times, tfi and tbi, were measured
between the reference firing instance and the ith forward and ith

backward firing instance of the alternate MUAPT, respectively, as
depicted in Fig. 1. The value of i ranged from one to five, such that no
more than five forward and backward recurrence times were recorded
for each reference MUAPT firing instance.

According to basic statistics theory, if two point processes are
independent, then they will be uncorrelated. For the specific case of
firing instances and recurrence times from pairs of neurons, McFad-
den (1962) proved that

if the stationary firing instances from two neurons occur indepen-
dently, then the recurrence times will be uniformly distributed
(uncorrelated).

This is a crucial property of recurrence times, fundamental to the
study of synchronization. It enables the detection of synchronization
that results from dependent firing instances between motor units. With
the use of the contrapositive of the proof by McFadden (1962)

if the recurrence times are not uniformly distributed (correlated),
then the stationary firing instances from two neurons do not occur
independently.
We tested pairs of stationary MUAPTs for significantly correlated
firing instances, indicative of dependence. Correlation was evaluated
by computing the goodness of fit between the empirical cumulative
distribution of recurrence times and the predicted uniform cumulative
distribution. The specific details of the procedure used for the good-
ness-of-fit test are provided in step 2 of APPENDIX and are summarized
here. Recurrence times were divided into different orders at intervals
of the mean interpulse interval (IPI) of the alternate MUAPT, as
described by the equation

Recurrence Time Interval � i � IPIAlt
� �

IPIAlt
�

2
(1)

where i ranged from �4 to 4. Recurrence times of MUAPTs with
independent firing instances were uniformly distributed within each
interval of the mean IPI of the alternate MUAPT. Figure 2A shows an
example of the empirical cumulative distribution of recurrence times
superimposed over the predicted uniform cumulative distribution
function. We tested the null hypothesis that the empirical recurrence
time data were uniformly distributed using the goodness-of-fit method

19.75 19.80 19.85 19.90 19.95 20.00
Time (s)

Reference
MUAPT
Alternate 
MUAPT

Measuring Recurrence Times

Fig. 1. Recurrence times measured among several firing instances from 1 pair of stationary motor-unit action-potential trains (MUAPTs). Each MUAPT was
designated as a reference or an alternate MUAPT, with the reference MUAPT having fewer firing instances. We measured recurrence times between each firing
instance in the reference MUAPT and the forward and backward firing instances of the alternate MUAPT, denoted by tf and tb, respectively. The 1st-order
recurrence times are indicated by tf1 and tb1. Similarly, the 2nd- and 3rd-order recurrence times are given by tf2 and tb2 and by tf3 and tb3, respectively. In total,
5 orders of recurrence times were measured for each firing instance in the reference MUAPT.
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with the Cramér-von Mises test statistic (Cramér 1928; von Mises
1931). Because of its sensitivity to deviations in the mean rather than
the variance of the data from uniformity (Stephens 1974), the Cramér-
von Mises test was robust to false detections of synchronization that
could result from motoneuron refractoriness. The null hypothesis was
rejected at the 0.05 significance level, corresponding to a Cramér-von
Mises statistic �0.461, as indicated by Stephens (1970). Recurrence
time distributions that deviated significantly from uniformity indi-
cated a statistically significant correlation between the MUAPTs.
Significantly correlated firing instances detected between stationary
MUAPTs indicated the pair of motor units manifested dependent
firing instances.

Test for the most statistically significant peak in the cross-corre-
lation histogram. This test was performed to identify and quantify the
amount of synchronization between stationary MUAPTs with depen-
dent firing instances. Specific details of this test are provided in step
3 of APPENDIX and are summarized here. Each of the nine recurrence
time intervals from each pair of MUAPTs was tested separately for
synchronization by detecting clusters of recurrence times with a
density that exceeded what would be expected due to chance. These
clusters, or peaks, could occur at different latencies and last for
different durations, or peak widths. Our approach iteratively tested all
possible latencies and peak widths of the recurrence time data to
identify the most statistically significant occurrence of synchroniza-
tion. Specifically, the peak widths ranged from 1 ms to one-half of the
mean IPI of the alternate MUAPT. For each peak width, we detected
the latency that produced the greatest number of recurrence-time
occurrences (k) and computed the statistical significance of the detec-
tion. The peak width that produced the number of occurrences with
the greatest statistical significance, beyond the 0.05 significance level,

indicated a detection of synchronization. An example of synchroni-
zation detected from the empirical cumulative distribution of recur-
rence times is shown in Fig. 2B. For each detection, the synchroni-
zation peak width (W) and latency (L) were recorded for further
analysis. The magnitude of synchronization was measured using the
synchronization index

SI �
kmax � k�

n
� 100 (2)

where kmax was the maximum number of recurrence times detected
within the peak of width W, and k� was the average number of
recurrence times expected by chance within the peak of width W,
computed as

k� � n � m (3)

where n is the number of firing instances of the reference MUAPT,
and m is equal to the mean IPI of the alternate MUAPT divided by the
peak width W (see Eq. 7 in APPENDIX). The synchronization index
provided the percentage of firing instances between two MUAPTs that
occurred in excess of chance (De Luca et al. 1993).

Synchronization Measured By Other Methods

Our SigMax detection method addresses the required statistical
considerations for identifying the latency, width, and magnitude of
synchronization with the greatest statistical significance from each
pair of stationary MUAPTs with dependent firing instances. We
compared synchronization results obtained from SigMax with those
obtained by three other methods published previously that do not

Recurrence Interval 
Latency (ms)

Pr
ob
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ilit

y

Uniform CDF

Empirical CDF

Statistically Significant 
Synchronization Detection

Recurrence Interval 
Latency (ms)

0

n

O
cc

ur
re

nc
es

Evaluating Dependence
Between Stationary MUAPTs

A B

Cramer VonMises
Goodness-of-fit

SigMax Synchronization Detection

Fig. 2. A depiction of our test for synchronization between stationary MUAPTs with dependent firing instances, using the SigMax detection method. A: the
empirical cumulative distribution function (CDF) of recurrence times (solid line) from 1 pair of MUAPTs is superimposed over the uniform CDF (dashed line),
predicted for MUAPTs with independent firing instances. A goodness-of-fit test was performed between the empirical and uniform cumulative distributions,
following the procedure detailed in step 2 of APPENDIX. Deviation of the empirical cumulative distribution from the predicted uniform cumulative distribution
beyond the 0.05 significance level, calculated by the Cramér-von Mises test statistic, indicated that the 2 stationary MUAPTs were correlated and produced
dependent firing instances. B: an example of the most statistically significant density of recurrence times detected from the empirical CDF (solid line) beyond
the 0.05 significance level, using the equations provided in step 3 of APPENDIX. The synchronization peak width W, shown as the width of the shaded box,
and latency L, located at the center of the peak width, were recorded for further analysis. The maximum number of synchronized occurrences, kmax, was measured
from the amplitude gained by the empirical CDF within the shaded region. The number of synchronized occurrences expected due to chance, k�, was measured
from the total amplitude gained by the expected uniform CDF (dashed line) within the shaded region. Both kmax and k� were used to compute the synchronization

index (SI) as the proportion of synchronized firing instances that occurred beyond what would be expected by chance (Eq. 2). i, recurrence interval; IPIAlt
�,

interpulse interval (IPI) of the alternate MUAPT.
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incorporate statistical tests necessary to measure synchronization
adequately. This comparison was performed on the same set of
stationary MUAPTs evaluated using the SigMax method. Synchroni-
zation was quantified using the synchronization index in Eq. 2 for all
detection methods tested.

Z-Score synchronization detection method. We followed the prac-
tice of assuming a normal distribution of bin amplitudes in the
cross-correlation histogram to compute the z-score significance
threshold. The baseline mean amplitude of the histogram was mea-
sured over a �200-ms region of the histogram, excluding the �20-ms
region centered �0 ms latency, as prescribed by previous methodol-
ogies used by Keen and Fuglevand (2004); Schmied et al. (1993); and
Sears and Stagg (1976). We then identified peaks in the histogram that
exceeded the 0.05 normal significance threshold, corresponding to a
z-score � 1.96. The number of significant peaks detected and the
corresponding synchronization index, peak width, and latency were
compared with the synchronization statistics measured for the same
pairs of MUAPTs using our SigMax detection method.

We also tested the underlying assumption used to justify the
appropriateness of the z-score for detecting synchronization. As stated
in INTRODUCTION, the z-score method is based on the assumption that
motor-unit firing instances are distributed normally. Previously used
distribution tests relied on �2 or Kolmogorov-Smirnov (KS) test
statistics to identify the deviations of empirical data from the expected
distribution (Clamann 1969; De Luca and Forrest 1973). Whereas
these methods were the most practical for the time of their use, later
work by Stephens (1974) showed that the �2 and KS tests have lower
statistical power than other goodness-of-fit test statistics. For example,
in the specific case of normal hypothesis testing, D’Agostino et al.
(1990) showed that these tests are prone to missed detections of
deviations from normality. In contrast, the D’Agostino-Pearson om-
nibus test (D’Agostino and Pearson 1973) overcomes these draw-
backs, not only because it is more sensitive to non-normal statistics,
but also, because it quantifies the nature of deviation from normality
using skewness and kurtosis statistics. Therefore, we implemented the
D’Agostino-Pearson omnibus test to determine if the motor-unit IPIs
deviated significantly from a normal distribution. The null hypothesis
of normality was rejected at the 0.05 significance level.

Cusum synchronization detection method. This method detects a
synchronization peak using the cusum of bin amplitudes from the
cross-correlation histogram. We applied the cusum detection method
by first measuring the baseline mean of the cross-correlation histo-
gram within �200 ms, excluding the �20 ms centered �0 ms latency.
The cusum data were then computed as the running sum of the
difference between the baseline mean and the amplitude of each bin in
the cross-correlation histogram [for additional details, see Ellaway
(1978)]. The cusum data were normalized by the difference between
the maximum and minimum values. Locations where the normalized
cusum data crossed the 0.1 and 0.9 thresholds indicated the positive
and negative boundaries of a synchronization peak, respectively
(Keen and Fuglevand 2004; Schmied et al. 1993). The synchroniza-
tion peak was calculated between the boundaries of the cusum data
and was compared with the synchronization peak obtained from our
SigMax detection method.

Common input assumption synchronization detection method. This
method computes the magnitude of synchronization from a fixed
region of the cross-correlation histogram, regardless of the statistical
significance computed for the detected amount of synchronization.
According to this approach, synchronization was measured from a
fixed, 11-ms region of the cross-correlation histogram, centered at 0
ms latency (Keen et al. 2012; McIsaac and Fuglevand 2007; Semmler
and Nordstrom 1995). Results from the common input assumption
synchronization detection method were compared with synchroniza-
tion results obtained using our SigMax detection method.

RESULTS

SigMax Synchronization Results

All MUAPTs were obtained using 30 iterations of the
error-reduction algorithm performed on 144 recorded sEMG
signals; a subset of 36 of these signals was used in the
accompanying report by Kline and De Luca (2014) to test
thoroughly the error-reduction process. In total, 2,287 MUAPTs
were obtained with accuracies �95%; 894 were from 72 FDI
contractions, ranging from 5% to 30% MVC; and 1,393 were
from 72 VL contractions, ranging from 20% to 50% MVC. In
total, statistically significant nonstationarities were detected in
100 or 11.2% of MUAPTs from FDI contractions and 187 or
13.4% of MUAPTs from the VL contractions. The remaining
stationary data consisted of 794 MUAPTs with 333,633 firing
instances from the FDI and 1,206 MUAPTs with 701,592 firing
instances from the VL.

Of the stationary data, the IPIs from 98.6% of MUAPTs
from the FDI and 99.8% of MUAPTs from the VL deviated
significantly from a normal distribution. Examples of non-
normal IPI histograms from several MUAPTs are shown in
Fig. 3. Normally distributed IPIs would manifest skewness
equal to zero and kurtosis equal to three (D’Agostino et al.
1990), but according to the D’Agostino-Pearson omnibus test,
the IPIs of all six MUAPTs in Fig. 3 manifested skewness and
kurtosis values that deviated significantly from normality (P �
0.0001). On average, IPIs from all MUAPTs tested were
positively skewed and had relatively greater occurrences in the
distribution tails than expected by normal statistics (Table 1).

In total, 6,453 and 11,283 pairs of stationary MUAPTs were
tested for synchronization from FDI and VL contractions,
respectively. Figure 4 summarizes the results. Our SigMax
detection method found statistically significant synchroniza-
tion in 42.0% of FDI MUAPT pairs and 54.8% of VL MUAPT
pairs. The average synchronization index was 19.8 and 16.9,
the synchronization peak width averaged 25.8 ms and 18.5 ms,
and the synchronization latency averaged �0.1 ms and �0.3
ms in FDI and VL data, respectively.

Effects of decomposition errors on calculations of syn-
chronization. To illustrate the importance of mitigating decom-
position errors before measuring synchronization, we com-
pared results from our SigMax method applied to pairs of
MUAPTs, obtained with and without the error-reduction algo-
rithm. Synchronization detections were compared between the
same pairs of MUAPTs in both muscles. According to the
results shown in Fig. 5, unmitigated decomposition errors
resulted in 11.2% or 1,268 additional detections of synchroni-
zation and 22.1% or 2,498 missed detections of synchroniza-
tion. For those MUAPTs between which synchronization was
correctly identified, on average, decomposition errors produced
a synchronization index that differed by �21.5%, a peak width
that differed by �25.1%, and a peak latency that differed by
more than �100% (Fig. 5).

Comparison of the z-score synchronization detection method
with SigMax. Figure 6 presents an example of z-score synchro-
nization detections from the cross-correlation histogram of
recurrence times for one pair of stationary MUAPTs. The
average bin amplitude of the histogram and the 1.96 z-score
statistical significance threshold are shown. In total, 12 peaks
manifested an average value above the normal significance
threshold, indicating 12 separate detections of synchronization
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from the z-score method. For the same data, the SigMax
detection method identified only one statistically significant
synchronization peak. When applied to all of the stationary
MUAPTs, the z-score synchronization detection method iden-
tified 104,662 synchronization peaks from 6,453 pairs of FDI
MUAPTs and 177,894 synchronization peaks from 11,283
pairs of VL MUAPTs (Fig. 7). On average, the z-score detec-
tion method found 16 synchronization peaks from each pair of
MUAPTs. This compares with a single synchronization detec-
tion found by SigMax in only 50% of the paired MUAPTs
studied.

We evaluated the capabilities of the z-score detection
method to estimate synchronization in the most centrally lo-
cated peak in each cross-correlation histogram. The average
values and 95% confidence intervals of the synchronization
index, peak width, and latency (shown in Fig. 4) were calcu-
lated for the same set of stationary MUAPTs, evaluated using
the SigMax method. Relative to the results from the SigMax
method, on average, the z-score method produced a synchro-
nization index that differed by �71.9%, a synchronization
peak width that differed by �85.8%, and a synchronization
latency that differed beyond �100% (shown in Fig. 7).

Comparison of the cusum synchronization detection method
with SigMax. Two examples of the cusum synchronization
detection method are shown in Fig. 8. Figure 8A provides an
example of recurrence time data from the first recurrence
interval of MUAPT pair #1. The corresponding normalized
cusum is plotted in Fig. 8B. The 0.1 and 0.9 confidence
intervals, typically used in the cusum detection method
(Keen and Fuglevand 2004; Schmied et al. 1993), are
illustrated. The cusum data crossed the 0.9 confidence
interval near 19 ms. However, the 0.1 confidence interval
was not crossed within the first recurrence interval shown.
The same data analyzed using our SigMax detection method
revealed a statistically significant peak centered near 10 ms
that spanned 14 ms in width (Fig. 8C). Because the cusum
method was unable to identify a synchronization peak
within the first recurrence interval, MUAPT pair #1 was
marked as a missed detection.

The cross-correlation histogram measured from MUAPT
pair #2 is shown in Fig. 8D, with the corresponding nor-
malized cusum displayed in Fig. 8E. A synchronization peak
was detected by the cusum method between �9 and 4 ms.
Relative to the 22.7 ms-wide synchronization peak found by
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Fig. 3. IPI histograms from 6 example
MUAPTs (MU). A: 1 from subject S1 con-
tracting the 1st dorsal interosseous (FDI) at
5% maximal voluntary contraction (MVC).
B: 1 from subject S3 contracting the FDI at
30% MVC. C: 1 from subject S4 contracting
the FDI at 20% MVC. D: 1 from subject S5
contracting the vastus lateralis (VL) at 35%
MVC. E: 1 from subject S6 contracting the
VL at 40% MVC. F: 1 from subject S2
contracting the VL at 20% MVC. The mean
IPI is indicated by the white, vertical dashed
lines, whereas the IPI SD is provided by
white, vertical dotted lines for each histo-
gram. The D’Agostino-Pearson omnibus test
revealed that the IPIs from all 6 histograms
deviated significantly from a normal distri-
bution (P � 0.0001). The data are positively
skewed (skewness � 0), with relatively
greater occurrences in the distribution tails
(kurtosis � 3) than would be expected by
normal statistics.

Table 1. Statistical results of the normality test for motor-unit IPIs

Muscle Non-normal MUAPT IPIs, n Significance Skewness Kurtosis

FDI 98.6%, 794 0.00255 [0, 0.0294] 0.46 [�0.63, 2.02] 6.42 [2.95, 17.6]
VL 99.8%, 1,206 0.00026 [0, 0.00897] 0.45 [�0.97, 2.08] 6.44 [3.21, 17.2]

Results from the D’Agostino-Pearson omnibus test for normally distributed interpulse intervals (IPIs) from stationary 1st dorsal interosseous (FDI) and vastus
lateralis (VL) motor-unit action-potential trains (MUAPTs). The percentage of MUAPTs with IPIs that deviated significantly from a normal distribution is shown,
as well as the mean and 95% confidence interval of the D’Agostino-Pearson omnibus test significance, skewness, and kurtosis. Significance values �0.05
indicated non-normal data; skewness values �0 indicated positive skewness; kurtosis values �3 indicated relatively greater occurrences in the tails of the
distribution than would be expected by normal statistics.
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our SigMax method (Fig. 8F), the cusum detection method
produced a synchronization peak width that differed by
�9.7 ms or �42.7%.

When we applied the cusum method to the same set of
stationary MUAPTs evaluated using the SigMax method, syn-
chronization peaks were identified from 99.8% of the paired

MUAPTs tested. The peak widths of the cusum detections
spanned �200 ms of the cross-correlation histogram tested.
However, to evaluate better the differences between the cusum
detection method and our SigMax method, we limited the
analysis of cusum peaks to only those detected within the first
interval of recurrence times. For these data, the cusum method
detected synchronization in 43.3% of paired MUAPTs from
the FDI and 36.9% of paired MUAPTs from the VL (see Fig.
4). Relative to synchronization detected by the SigMax
method, the cusum method produced 6.2% or 549 additional
detections of synchronization and 27.5% or 2,447 missed
detections of synchronization. When comparing the detec-
tions made by both methods, the greatest discrepancies in
the synchronization statistics were observed for the peak
widths, 95% of which differed within the range of �67.6%
to 101% (see Fig. 7).

Comparison of the common input assumption synchroniza-
tion detection method with SigMax. Two sample synchroniza-
tion peaks are shown in Fig. 9. For one pair of MUAPTs, the
common input assumption method assumed that the synchro-
nization peak was located at 0 ms latency with a peak width of
11 ms, eliciting a synchronization index of �8.14 (Fig. 9A).
For the same pair of MUAPTs, our SigMax detection method
indicated that no statistically significant synchronization peak
was present.

The cross-correlation histogram measured from the recur-
rence times of a second pair of MUAPTs is shown in Fig. 9B.
The common input assumption detection method assumed that
the synchronization peak was located at 0 ms latency with a
peak width of 11 ms. This assumed detection yielded a syn-
chronization index of 0.536. However, our SigMax detection
method found that the most statistically significant peak in the

0

50

100

Sy
nc

. M
U

AP
Ts

(%
)

0

25

50

PW
 (m

s)

-25

0

25

LA
T 

(m
s)

0

20

40

SI
(%

)

CusumZ-Score Common 
Input

SigMax

A

*

B

DC

FE

HG

sTPAUM .cnyS LVsTPAUM .cnyS IDF

FDI Sync. Index VL Sync. Index

CusumZ-Score Common 
Input

SigMax

FDI Peak Width VL Peak Width

FDI Latency VL Latency

*

*

*

Summary of Synchronization Measured from 4 Different Detection Methods 

Fig. 4. Summary of synchronization (Sync.)
measured by the SigMax detection method
(bars with no fill); the z-score synchroniza-
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sumed as prescribed by methods reported
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shown by the horizontal line.

-100

0

100

D
iff

er
en

ce
(%

)

A
FDI Sync. Discrepancies

VL Sync. Discrepancies

-100

0

100

D
iff

er
en

ce
(%

)

PWSI LAT

B

Sync
Detections

Synchronization Discrepancies 
Resulting from Decomposition Errors

Fig. 5. Differences in synchronization, measured between the same set of
MUAPTs, obtained with and without error reduction. Synchronization was
evaluated using the SigMax detection method among pairs of (A) FDI and (B)
VL MUAPTs. Displayed is the average magnitude of the percent difference of
additional (positive) and missed (negative) synchronization detections. Also
plotted are the average percent difference (horizontal line) and 95% confidence
interval (bars) of the difference in the SI, the synchronization peak width, and
the synchronization latency. These discrepancies represent the changes in the
amount of synchronization that result from unmitigated decomposition errors.

2735NOVEL METHOD MEASURING MOTOR-UNIT SYNCHRONIZATION

J Neurophysiol • doi:10.1152/jn.00725.2013 • www.jn.org

on M
ay 21, 2015

D
ow

nloaded from
 



data centered near 10.4 ms latency with a peak width of 6.78
ms and synchronization index of 5.88.

The common input assumption method detected synchroni-
zation peaks in 100% of the pairs of stationary MUAPTs,
whereas the SigMax method detected synchronization in only
50% of stationary MUAPT pairs. Compared with the SigMax
method, on average, the synchronization index differed by
�35.0%, the synchronization peak width differed by �38.8%,
and the synchronization latency differed by �100% (see Fig.
7). However, most peculiarly, the common input assumption
method produced negative values of synchronization in 2,339
or 13.2% of paired MUAPTs (see Fig. 4).

Long-term Synchronization

The percentage of paired MUAPTs, detected with synchro-
nization by our SigMax method at each recurrence interval, is

shown in Fig. 10, A and C, for FDI and VL data, respectively.
The first recurrence interval manifested the greatest percentage
of pairs of MUAPTs with synchronization. Relatively higher-
order recurrence intervals had progressively fewer synchro-
nized MUAPT pairs.

Perkel et al. (1967b) observed that peaks in relatively lower
orders of recurrence times often produced harmonic peaks in
relatively higher orders of recurrence times. Their analysis
demonstrated that these harmonic peaks are merely statistical
artifacts of recurrence time analysis. Such occurrences do not
necessarily indicate unique occurrences of synchronization.
Figure 10, A and C, illustrates the percentage of pairs of
MUAPTs with synchronization that did not result from har-
monics. All recurrence time intervals beyond the first interval
manifested �4% of paired MUAPTs with synchronization.
Because our SigMax detection method used a minimum sig-
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nificance threshold of 0.05, as many as 5% of MUAPT pairs
could manifest significant peaks as a consequence of random
variance in the recurrence time data that were not indicative of
synchronization. Therefore, all recurrence intervals with �5%
of synchronized MUAPT pairs were considered statistically
insignificant detections. The remaining statistically significant
detections of synchronization occurred within the first recur-
rence time interval. The final distributions of the latencies of
these synchronization detections are shown in Fig. 10, B and D.
Overall, 95% of the synchronization latency data ranged from
�7.4 to 7.2 ms in the FDI and from �6.0 to 5.5 ms in the VL.

DISCUSSION

This study revealed two physiological findings.
1) Our analysis did not support the previously reported assump-

tion that common inputs cause synchronization amongst all mo-
toneurons in a pool.

2) Long-term synchronization should not be interpreted as
representing a physiological event.

The Common Input Assumption

We found synchronous and dependent firing behavior in
only 50% of the motor-unit pairs studied. Our result differs

from that predicted by the notion that common inputs cause
synchronization amongst all pairs of motoneurons in the pool
of a given muscle. Yet, our finding is consistent with the
original work of Sears and Stagg (1976), who concluded that
the common input notion “does not mean that each contribut-
ing motoneuron necessarily has common presynaptic inputs
with every other motoneuron of the pool.” We first reported
our doubts concerning the common input assumption in De
Luca et al. (1993). More recent studies by Dartnall et al.
(2008), Hockensmith et al. (2005), and Keen and Fuglevand
(2004) have also reported that only a fraction of motor-unit
pairs manifests statistically significant synchronization. How-
ever, these later studies did not consider the statistical signif-
icance of their results and continued to support the notion of
common inputs among all pairs of motoneurons.

Consider the underlying requirements to prove the existence
of the common input assumption. Dependence can only be
proven between stationary MUAPTs using methods capable of
detecting significantly correlated firing instances that are robust
to false detections from motoneuron refractoriness. According
to basic statistical theory

if the firing instances of two motor units are independent,
then the stationary firing instances are uncorrelated.
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Then, according to the contrapositive
if the stationary firing instances are correlated, then the

firing instances of two motor units are not independent.
Dependence of the firing instances between motor units can

only be proven by first establishing that the firing instances
manifest a statistically significant correlation. Although this
principle is fundamental to measuring synchronization, it has
not been taken into account in the majority of previous studies.
Keen et al. (2012), McIsaac and Fuglevand (2007), and Sem-
mler and Nordstrom et al. (1995) proposed that the magnitude

of synchronization quantified the strength of common inputs
received by motoneurons. Their approach assumed dependence
of all motoneurons on common inputs without proving that the
firing instances between motor units were correlated. Yet, the
inverse of the conditional relationship above indicates that

if the stationary firing instances are uncorrelated, then the
firing instances of two motor units may or may not be dependent.
Therefore, measurements of synchronization from paired mo-
tor units with uncorrelated firing instances do not prove that
motoneurons receive common inputs.
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Even if Kirkwood and Sears (1978), Nordstrom et al. (1992),
and Sears and Stagg (1976) observed significantly correlated
firing instances among some pairs of motor units, their obser-
vations still would not prove that common inputs cause syn-
chronization. Consider the following simple example. An ob-
server records a person walking on the beach every �12 h. The
observer also records that the tide of the ocean is highest every
time the person walks on the beach. After repeatedly making
similar observations over several days, the observer notices a
correlation between the person walking on the beach and the
high tide. Although the correlation in the data indicates some
degree of dependence between the person walking and the high
tide, it does not prove that the person causes the high tide.
Similarly, correlated firing instances indicative of synchroni-
zation between stationary MUAPTs do not prove that synchro-
nized firing instances are caused by common inputs to the
motoneurons.

Long-Term Synchronization

Long-term synchronization with latencies beyond �20 ms
has been reported by Datta and Stephens (1990), De Luca et al.
(1993), Kirkwood et al. (1982), Schmied et al. (1993), and
Semmler and Nordstrom (1995). With the use of the SigMax
detection method, we found that these occurrences are not
likely to be a physiological event but are an artifact of false
detections produced by two factors inherent to previous syn-
chronization detection methods.

The first factor is the use of an insufficient and relatively low
significance threshold to detect synchronization peaks. This
effect may be seen in Fig. 6 for the z-score method, where an
overwhelming number of synchronous peaks were detected at
long latencies. Similar detections of long-term synchronization
were obtained in 18% of the motor-unit pairs using a binomial
significance threshold, as done by De Luca et al. (1993). A
comparison of their results with those presented in this study
suggests that their binomial significance threshold underesti-
mated the actual statistical significance of synchronization
detections.

The second factor is the presence of harmonics in the
cross-correlation histogram (Fig. 10). Specifically, when syn-
chronization is observed amongst first-order recurrence times,
there is a greater likelihood that synchronization will also be
observed at higher orders of recurrence times. The presence of
these harmonics has been well documented in the work of
Perkel et al. (1967b) but has not been considered by most
studies of synchronization [for examples, see Bremner et al.
(1991); Kirkwood et al. (1982); Semmler et al. (2002)]. The
error can be avoided by calculating synchronization, exclu-
sively from first-order recurrence times, using an objectively
derived and statistically reasoned method to detect statistically
significant occurrences of synchronization from stationary
MUAPTs with dependent firing instances.

Quality of Data

In addition to using a more robust and statistically more
rigorous approach to measuring synchronization, we had a
vetted data set representing physiologically meaningful infor-
mation relevant to manifestations of synchronization during
isometric contractions.

1) The data had a known, high accuracy level. The
decomposition algorithm used in this study has been vali-
dated extensively by De Luca et al. (2006), De Luca and
Contessa (2012), and Nawab et al. (2010). Independent
verification, using three different methods by Hu et al.
(2013a, b, c, 2014), has confirmed that our dEMG algo-
rithms can yield firing instances of MUAPTs having an
average accuracy of 95%. Furthermore, we applied the
error-reduction algorithm described in the accompanying
report by Kline and De Luca (2014) to reduce decomposi-
tion errors and improve the estimate of the identification and
the location of the firing instances. As may be seen in Fig.
5, our analysis showed that unmitigated decomposition
errors result in false identifications, missed detections, and
incorrect estimation of synchronization. Other studies of
synchronization have reported no measure of the decompo-
sition accuracy. Instead, to address potential decomposition
errors, firing instances located amongst superpositions of
other action potentials were discarded (Nordstrom et al.
1990, 1992; Semmler and Nordstrom 1995). It is in these
locations that the action potentials of different motor units
occur at or near the same time, indicating that the firing
instances of different motor units are most likely to be
synchronized. This tailoring practice would likely contrib-
ute to the lesser synchronization levels reported previously.

2) The data set was assembled objectively. MUAPTs were
not subjectively culled or altered in any manner. Instead, we
performed our synchronization analysis on the entire set of
MUAPTs obtained from sEMG decomposition within the ac-
curacy bounds we report.

3) Combined with our technology for recording and decom-
posing sEMG signals, our experiments were designed to study
synchronization in natural voluntary contractions where the
subjects were instructed to maintain a constant force. This
paradigm is similar to that used by Contessa et al. (2009), De
Luca et al. (1993), and Defreitas et al. (2013). Due to technical
limitations, other studies were constrained to study MUAPTs
during artificial contractions, where the subjects were typically
instructed to manipulate their contractions so as to maintain
fixed motor-unit firing rates �8–10 pulses/s (Dartnall et al.
2011; Datta and Stephens 1990; Keen and Fuglevand 2004;
Nordstrom et al. 1992; Semmler et al. 1997). Force levels were
rarely reported, but from the description of the tests, they
seemed to be �5% MVC. In our experiments, data were
obtained from more natural contractions whose force levels
ranged from 5 to 50% MVC.

Evolution of the SigMax Detection Method

Our approach for measuring synchronized firing instances
between MUAPTs considered the consequences of incorrect
statistical assumptions cautioned by Perkel et al. (1967b).
We addressed their warnings by designing a synchronization
method that detected the most statistically significant inci-
dence of synchronization between stationary MUAPTs with
dependent firing instances. The tests for stationarity and
dependence are fundamental precursory measures for calcu-
lating the degree of synchronization between motor units.
For the past four decades, all of the methods that have been
developed to measure synchronization have not applied
these considerations. Some proposed that the motor-unit
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firing instances had a Gaussian distribution but never tested
their assumptions, others established values of the latency
and peak width of synchronization without testing statistical
significance, and almost all methods did not test for statis-
tical dependence between MUAPTs but were used nonethe-
less to substantiate the notion that motoneurons depend on
common inputs.

The SigMax detection method overcomes the shortcom-
ings of other approaches. It is an extension of the method we
described in De Luca et al. (1993). Like the earlier report, it
uses binomial statistics to detect synchronization. Our ear-
lier work, although more statistically rigorous than other
methods, had a drawback. The method underestimated the
probability of detecting regions of statistically significant
density in the cross-correlation histogram. To overcome the
shortcoming of our earlier work, instead of computing the
95% binomial significance threshold—that each bin has a
given number of occurrences—we computed the 95% bino-
mial significance threshold—that any bin has a given num-
ber of occurrences. Mathematically, this difference is illus-
trated by comparing the single binomial probability equa-
tion provided in De Luca et al. (1993) with the more detailed
series of equations required for our approach, as detailed in
step 3 of APPENDIX. Probabilistically, the difference becomes
visible when considering a simple experiment of rolling
dice. The probability of rolling three number 3s from a
six-sided die after n rolls is lower than the probability of
rolling three of any kind from a six-sided die after n rolls.
As a result, the 95% binomial significance threshold of
rolling three number 3s is relatively lower than the 95%
binomial significance threshold of rolling three of any kind.
This accounts for the lower significance threshold used by
De Luca et al. (1993). In contrast, our significance threshold
is relatively higher and therefore, less susceptible to the
false detections. Specifically, the following improvements
were made.

1) Our SigMax method does not require any a priori assump-
tions of the underlying motor-unit firing statistics. This con-
trasts with the z-score synchronization detection method that
depends on a normal distribution of bin amplitudes in the
cross-correlation histogram—an assumption that results in er-
roneous detections of synchronization. Instead, SigMax iden-
tifies the most statistically significant detection of synchroni-
zation, regardless of the statistics that describe motor-unit
firing instances.

2) We implemented a test to identify MUAPTs that
contained statistically significant nonstationarities—a fun-
damental, preliminary measure that must precede any syn-
chronization analysis. Only stationary MUAPTs were used
for the analysis of synchronization. Data from Moore et al.
(1970) demonstrated that moderate nonstationarities hinder
the detection and estimation of dependent firing behavior
between MUAPTs.

3) Pairs of stationary MUAPTs were tested directly for
significantly dependent firing instances. Our goodness-of-fit
test evaluated by the Cramér-von Mises test statistic ensured
that all measurements of synchronization made between sta-
tionary MUAPTs were proven to have dependent firing in-
stances. All other reported approaches used to measure syn-
chronization did not apply tests for dependent motor-unit firing
behavior.

4) We measured synchronization from the cumulative
distribution function of cross-correlation data, rather than
from the cross-correlation histogram of the data. In so
doing, we avoided the false detections of synchronization
that could occur from relatively high fluctuations of bin
amplitudes as a result of the arbitrary nature of histogram
binning. The use of the cumulative distribution function also
allowed us to avoid false detections of synchronization from
relatively high fluctuations in bin amplitudes that typically
result from motoneuron refractoriness (Perkel et al. 1967b).

Consequence of the Z-Score Synchronization Detection
Method

The z-score detection method relies on the assumption
that the distribution of the IPIs is Gaussian. Contrary to
previous reports by Andreassen and Rosenfalck (1980),
Buchthal et al. (1954), and Clamann (1969), the normality
of the IPI distribution has been questioned before by De
Luca and Forrest (1973), Lippold et al. (1960), and Person
and Kudina (1972). The overwhelmingly conclusive results
from the motor-unit IPI normality test performed in this
study demonstrate that IPIs of MUAPTs in EMG signals,
obtained from natural (unconstrained) isometric contrac-
tions, are not normally distributed. We are confident in this
observation because of the following: 1) the size of the data
from individual contractions was considerably greater (more
than one order of magnitude) than that used in previous
studies; 2) we used the D’Agostino-Pearson omnibus test for
normality, which has been widely accepted as a superior test
than those available to the earlier reports; and 3) the number
of observations used for each normality test was tested
previously by D’Agostino et al. (1990) and found to be
sufficient to reveal statistics underlying motor-unit firing
instances. Some previous reports of the z-score method
(Keen et al. 2012; Nordstrom et al. 1992; Sears and Stagg
1976) may have used data sets with a greater number of
firing instances, but the D’Agostino-Pearson omnibus test
(D’Agostino and Pearson 1973) indicates that such large
data sets are not required. In fact, the presumed need for
large data sets may have cajoled investigators to collect data
under the artificial (constrained) contraction paradigm dis-
cussed previously.

Consequences of the Cusum Synchronization Detection
Method

Relative to our SigMax method, the cusum method pro-
duced two types of discrepancies when estimating the syn-
chronization peak: 1) approximately one in every four
synchronization peak detections is missed (Fig. 7, A and B);
and 2) correctly identified peaks manifest peak-width dis-
crepancies that range beyond �50% (Fig. 7, C–H). Al-
though synchronization detections from the cusum method
are subject to relatively large estimation discrepancies, the
average synchronization values are relatively similar to
those measured using SigMax. This result indicates that
comparisons of average values may not necessarily reveal
the discrepancies produced by a given method. Overall, the
discrepancies reported in Fig. 7 demonstrate that changes in
the cusum from the mean value of the cross-correlation
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histogram do not guarantee adequate detections of synchro-
nization.

Consequence of the Common Input Assumption
Synchronization Detection Method

The common input assumption synchronization detection
method established de facto that the latency of synchronized
firing instances occurs at 0 ms, spanning 11 ms in peak width.
Our analysis has demonstrated that this assumption is factually
incorrect and resulted in the detection of negative values of
synchronization from 13.2% of pairs of FDI and VL MUAPTs.
Nordstrom et al. (1992) also reported negative synchronization.
The physiological interpretation of negative synchronization
has never been explained and remains a confounding detail that
poses a physiological conundrum.

Overall, our analysis motivates the need for robust statistical
methods when measuring synchronization. Failure to apply
necessary fundamental tests, such as those for stationarity or
dependence, leads to the discrepancies between synchroniza-
tion that we observed and synchronization values reported in
previous studies. It is only from empirical data obtained by
factually substantiated statistical measures that physiological
mechanisms of motor-unit control can be revealed properly. As
such, the validity of the notion that common inputs cause
synchronization of motor-unit firing instances awaits experi-
mental verification.

APPENDIX: SIGMAX SYNCHRONIZATION DETECTION
METHOD

Step 1: Test for Statistically Significant Nonstationarities

Methods that were used previously to detect nonstationary
MUAPTs have relied on qualitative analyses, such as observing
scatter plots of successive IPIs (Clamann 1969; Masland et al.
1969; Person and Kudina 1972). Although innovative at their time
of use, these techniques limit the detection of nonstationarities to
specific orders of IPIs. To overcome this shortcoming, we imple-
mented the now widely used KPSS test to detect statistically
significant, nonstationary MUAPTs (Kwiatkowski et al. 1992).
According to DeJong et al. (1992) and Diebold and Rudebusch
(1991), the KPSS test has greater statistical power for detecting
nonstationary data than the standard unit root tests presented by
Dickey and Fuller (1979). For each train of IPIs that we tested, the

null hypothesis was that the motor-unit firing instances separated
by different lag times were stationary. We implemented the test
with T1/2 different lag times, where T is the sample size of IPIs for
each MUAPT, as recommended by Andrews (1991) and Kwiat-
kowski et al. (1992). The null hypothesis was rejected at the 0.05
significance level, corresponding to a KPSS test statistic of 0.463.
All MUAPTs that produced a KPSS test statistic �0.463 contained
statistically significant, nonstationary firing instances. Only sta-
tionary MUAPTs were tested for synchronization.

The IPIs from two example MUAPTs are shown in Fig. 11.
Specifically, in Fig. 11A, not only was no visible trend apparent in
the data, but also, the KPSS test statistic was 0.0643, well below
the 0.463 detection threshold for nonstationary MUAPTs. In Fig.
11B, the IPIs of a moderately nonstationary MUAPT are shown.
Although only a slight positive trend was visible in the IPI data as
a function of time, the KPSS test statistic was 1.19, indicating that
the MUAPT contained statistically significant, nonstationary firing
instances.

Step 2: Test for Statistically Significant, Dependent Firing
Instances

We assessed dependence of the firing instances between station-
ary MUAPTs by identifying statistically significant correlations in
the recurrence time data using a goodness-of-fit test between the
empirical cumulative distribution function of recurrence times and
the predicted uniform cumulative distribution function. Further
details of this and other goodness-of-fit tests are provided in
D’Agostino and Stephens (1986). Specifically, we tested the null
hypothesis that if the firing instances of two motor units are
independent, then their recurrence times will be uniformly distrib-
uted (McFadden 1962). Mathematically, this was represented by
the hypothesis

H0: t1, t2, ..., tn comes from U(t)
where n recurrence times, ti, come from a uniform distribution. By
detecting deviations of the empirical cumulative distribution function
of recurrence times, F(t), from the predicted uniform cumulative
distribution function, U(t), we could test the null hypothesis and
identify motor units with dependent firing instances. We evaluated the
goodness of fit between the empirical and uniform cumulative distri-
butions using the Cramér-von Mises test statistic, Wn

2, first presented
by Cramér (1928) and von Mises (1931) and then later improved upon
by Smirnov (1936, 1937), as

Wn
2 � n���

�
�F�t� � U�t��2dU�t� (4)

We chose the Cramér-von Mises test statistic, Wn
2, as opposed to

the �2 or KS statistics, because the Cramér-von Mises test statistic
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Fig. 11. The IPIs of 2 example MUAPTs,
measured during the 25-s constant force re-
gion of the contraction. Shown are the IPIs of
a (A) stationary MUAPT and (B) moderately
nonstationary MUAPT. The Kwiatkowski,
Philips, Schmidt, and Shin (KPSS) test sta-
tistic, indicated in the upper-right corner of
each plot, was used to determine the station-
arity of each MUAPT. A KPSS test statistic
�0.463 indicated that the MUAPT contained
statistically significant nonstationary firing
instances.
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tends to have greater statistical power (Stephens 1974). To com-
pute the Cramér-von Mises goodness-of-fit test, we arranged the
recurrence times, ti, in ascending order, such that

t1 	 t2 	 ... 	 tn
We then performed a probability integral transformation (Fisher 1930)
of the recurrence time data to obtain the sequence of values ui, such
that

ui � U(ti); for i � 1...n
These data were used to compute the Cramér-von Mises test

statistic specific for the uniform distribution goodness-of-fit test
derived by Pearson and Stephens (1962) and Stephens and Magg
(1968) as

Wn
2 �

1

12n

 �i�1

n �ui � �2i � 1� � 2n�2 (5)

Following the statistical analysis of Stephens (1970), we adjusted Wn
2

to produce a modified Cramér-von Mises test statistic, W*, as

W� � �Wn
2 � 0.4 ⁄ n � 0.6 ⁄ n2��1.0 
 1.0 ⁄ n� (6)

With the use of Table 1 in Stephens (1970), the modified
Cramér-von Mises test statistic, W*, was compared with the
derived percentage points of W* to determine the statistical sig-
nificance of the goodness of fit. We rejected the null hypothesis,
H0, at the 0.05 significance level, demonstrated by the conditional

if W* � 0.461→
then

Reject H0

Rejection of the null hypothesis, H0, established the existence of
statistically significant correlations, indicating dependent firing in-
stances between the stationary MUAPTs.

Step 3: Test for the Most Statistically Significant Peak in the
Cross-Correlation Histogram

We identified the most statistically significant occurrences of syn-
chronization between stationary MUAPTs with dependent firing in-
stances. Figure 12 illustrates a pictorial demonstration of our algo-
rithmic approach. For each empirical cumulative distribution of re-
currence times, we first selected a temporal window of width Wj, such
that

Wj � IPIAlt
� �mj

(7)

where mj ranged from two to the closest integer, greater than or

equal to the mean IPI of the alternate MUAPT (Ī P̄ Ī Ā l̄ t̄). The
window width Wj was chosen, such that the recurrence time data
over the given interval could be sectioned entirely into mj equal
sections of width Wj. For each window width, the number of k
recurrence times within the window was counted at different
latencies, L (Fig. 12). The latency, L, was increased incrementally
by 0.1 ms. After computing the amplitude k within the window of
width Wj at all possible latencies, we identified the latency, L, that
contained the maximum amplitude of recurrence times, denoted
kmax.

We computed the probability of finding at least kmax occurrences
within the interval of width Wj. The probability that any of mj

equally spaced sections, bin1,2,...m, of width Wj contains at least

kmax occurrences is equal to the union of the probability that each
section contains at least kmax occurrences shown by the equation

Pj�Any bin � kmax� � Pj�bin1 � kmax � bin2

� kmax � · · · � binm � kmax� (8)

With the use of the inclusion-exclusion principle of probability, we
can decompose Eq. 8 as follows

Pj�bin1 � kmax � bin2 � kmax � · · · � binm � kmax� � · · ·

· · · � P�bin1 � k� 
 P�bin2 � k� 
 · · · 
P�binm � k� · · ·

· · ·�P�bin1 � k � bin2 � k� � P�bin1 � k � bin3 � k� � · · ·

· · ·�P�bin2 � k � bin3 � k� · · · �P�binm�1 � k � binm � k� · · ·

· · · 
 P�bin1 � k � bin2 � k � bin3 � k� · · · etc
(9)

Because all sections, bin1,2,...m, are of equal width Wj, and the
probability of incrementing each section is equal under the null
hypothesis (McFadden 1962), we can simplify Eq. 9 as follows

Pj�bin1 � kmax � bin2 � kmax � · · · � binm � kmax� � · · ·

��k�kmax

n �
��1�2P�1 bin � k� � Number of 1 Bin Combinations · · ·

· · · 
 ��1�3P�2 bins � k� � Number of 2 Bin Combinations · · ·

· · · 
 ��1�4P�3 bins � k� � Number of 3 Bin Combinations · · ·

· · · 
 ��1�m
1P�m bins � k� � Number of m Bin Combinations
	 (10)
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Fig. 12. A graphical depiction of the 3rd step of the SigMax detection method.
Synchronization was measured from the empirical cumulative distribution of
recurrence times between stationary MUAPTs with dependent firing instances.
Recurrence times were divided into different orders based on the recurrence

interval, i, and the mean IPI of the alternate MUAPT, IPIAlt
�, as detailed by Eq. 1

in the text. A window of width Wj was selected and used to calculate the number
of recurrence times at different latencies, L. The latency that provided the
maximum number of recurrence times, kmax, was selected for significance testing.
Statistical significance was computed as the probability, Pj, of finding kmax

occurrences within a window of width Wj, using the equations in step 3 of
APPENDIX. This procedure was repeated for windows of different widths defined by
Eq. 7 in the text. The most statistically significant density of recurrence times was
identified as the jth window width that produced the minimum probability, Pmin, of
all Pj. If Pmin were a �0.05 significance threshold, then the pair of MUAPTs
manifested statistically significant synchronization.
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which can be reduced further to

Pj�Any bin � kmax�

� �k�kmax

n 
�i�1
m ��1�i
1�m

i �P�i bins � k�
 (11)

where n is the number of firing instances from the reference MUAPT
or total number of possible occurrences within a section, or bin, of
width Wj. The probability that i bins have k occurrences can be found
using Bayes conditional probability rule as follows

P�i bins � k� � P�i � 1 bins � k� � P�bini � k
i � 1 bins � k�
�P�bin1 � k� � P�bin2 � k
1 bin � k� � · · ·

· · · � P�bin3 � k
2 bins � k� � P�bini � k
i � 1 bins � k�
(12)

where

P�bin1 � k� � �n

k �p1
k�1 � p1�n�k (13)

and

P�bini � k
i � 1 bins � k� � �n � �i � 1�k

k �pi
k�1 � pi�n�ik

(14)

where the probability pi is defined by

pi � 1 � �m � �i � 1�� (15)

In such a manner, we calculated the probability Pj of finding at least
kmax occurrences within any window of width Wj.

We repeated the above procedure using windows with progres-
sively greater widths defined by Eq. 7. For each window of width Wj,
we found the latency L that provided the maximum number of
occurrences kmax. Subsequently, we computed the probability Pj of
finding kmax occurrences within each window of width Wj. After
repeating the procedure for all possible window widths, we identified
the jth window that provided the minimum probability Pmin from all
measured probabilities Pj. If the minimum probability, Pmin, were
�0.05 significance threshold, then that pair of MUAPTs was deter-
mined to have statistically significant synchronization within the
given interval of recurrence times tested.

Notice that Eqs. 12–14 are well suited for detecting a statistically
significant number of synchronized occurrences at relatively high
significance levels, such as the 0.05 level used in this study. These
equations approach the boundary of their efficacy when evaluating the
statistical significance for a measured number of recurrence times
relatively close to the number of recurrence times expected by chance
(see Eq. 3). However, under these conditions, the similarity between
the number of recurrence times measured and the number of recur-
rence times expected by chance would indicate that the firing in-
stances from the two motor units do not occur with statistically
significant dependence. Therefore, this boundary condition has virtu-
ally no effect on the detections of statistically significant synchroni-
zation reported in this study.
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