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Abstract—We have developed and evaluated several dynamical
machine-learning algorithms that were designed to track the
presence and severity of tremor and dyskinesia with 1-s resolution
by analyzing signals collected from Parkinson’s disease (PD)
patients wearing small numbers of hybrid sensors with both 3-D
accelerometeric and surface-electromyographic modalities. We
tested the algorithms on a 44-h signal database built from hybrid
sensors worn by eight PD patients and four healthy subjects who
carried out unscripted and unconstrained activities of daily living
in an apartment-like environment. Comparison of the perfor-
mance of our machine-learning algorithms against independent
clinical annotations of disorder presence and severity demon-
strates that, despite their differing approaches to dynamic pattern
classification, dynamic neural networks, dynamic support vector
machines, and hidden Markov models were equally effective in
keeping error rates of the dynamic tracking well below 10%. A
common set of experimentally derived signal features were used to
train the algorithm without the need for subject-specific learning.
We also found that error rates below 10% are achievable even
when our algorithms are tested on data from a sensor location
that is different from those used in algorithm training.

Index Terms—Accelerometer signals, dynamical machine
learning, electromyographic (EMG) signals, Parkinson’s disease
(PD), tremor and dyskinesia.

I. INTRODUCTION

P ARKINSON’S DISEASE (PD) is one of a number of
neuromuscular conditions whose progression can be

described in terms of the severity and frequency of associated
movement disorders, such as tremor and dyskinesia. Tremor is a
periodic involuntary movement, with a frequency of between 3
and 6 Hz, most commonly seen initially in the hands or feet [1],
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whereas dyskinesia is an aperiodic and uncoordinated type of
involuntary movement [2] found in the extremities and trunk.
In order to alleviate these conditions, clinicians can titrate
anti-Parkinson’s medications (such as levodopa) or use surgical
implants (for deep-brain stimulation). The efficacy of these
treatment methods can be measured by remotely tracking the
frequency and severity of the movement disorders. To that end,
in current clinical practice patients are typically asked to fill
out diaries or questionnaires detailing the type and severity of
movement disorders experienced. However, this self-reporting
typically does not correlate well with expert annotations in a
clinical environment (correlation as low as 0.49 and as high as
0.74 [3]).
Given the proliferation of wearable sensor technology and

improvements in machine learning algorithms [4], the poten-
tial exists to develop systems that allow clinicians to recognize
movement disorders in sensor-wearing patients objectively, re-
motely, and without intrusion. There have been several notable
reports of progress in this direction using a number of different
machine learning algorithms.
Salarian et al. [5] presented an automatic system based on a

Bayesian maximum-likelihood classifier for dynamic tracking
of tremor with 1-s resolution using triaxial gyroscope signals
from subjects performing scripted sequences of activities such
as tooth-brushing and eating. Their algorithm yielded 99.5%
sensitivity on tremor-only data and 94.2% specificity on tremor-
free data when compared with expert video annotation. This al-
gorithm, however, was not designed to discriminate between
tremor and dyskinesia and was therefore not tested on datasets
containing instances of dyskinesia.
Keijsers et al. [6] used static neural networks (SNN) to track

(with a 1-min resolution) dyskinesia by analyzing the signals
received from accelerometeric (ACC) sensors worn by PD
patients carrying out scripted activities in a randomized order.
They reported low error rates when tracking dyskinesia under
such conditions. However, in addition to being limited to a
1-min temporal resolution, the tracking method of this report
also did not consider the problem of discriminating dyskinesia
from tremor.
Patel et al. [7] used support vector machines (SVMs) to de-

tect both tremor and dyskinesia throughout the whole body by
analyzing the signals from uniaxial ACC sensors worn by PD
patients. In order to evaluate algorithm accuracy, patients were
asked to perform standardized tests specifically used by clini-
cians to elicit and assess movement disorders; the SVMs identi-
fiedwhether or not the disorders were present on the basis of fea-
tures calculated over the entire 30-s duration of each test. Error
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rates of around 2% were reported for the detection of tremor as
well as of dyskinesia. It should be noted that this algorithm re-
quires a priori knowledge of the specific standardized test that
the subject has been asked to carry out during the 30-s interval
of ACC signal acquisition. Furthermore, this algorithm also has
the practical limitation that before it can be used to detect the
presence of tremor or dyskinesia in a subject, it must first be
trained on previous data acquired from the same subject.
Palmes et al. [8] utilized an ensemble of several cooperating

SVMs to analyze surface electromyographic (EMG) sensor data
to recognize the presence of tremor in PD patients. Their al-
gorithm was able to distinguish scripted activities performed
by PD patients from those performed by healthy controls with
an error rate of 2% using subject-independent training. Besides
producing only one decision per scripted activity, their algo-
rithm’s applicability is limited only to the detection of tremor.
Motivated by the encouraging results from previous work by

others, we set out to overcome the limitations of these other
algorithms. Most importantly, our goal was to develop algo-
rithms that can track both tremor and dyskinesia without re-
stricting the patient to scripted or standardized activities. Rather,
we envisioned the patient freely carrying out activities of daily
life in an apartment/home environment while wearing wireless
body-worn sensors. The algorithms would monitor the resulting
sensor signals for the purpose of establishing the presence/ab-
sence of tremor and dyskinesia and assessing their respective
severity levels in accordance with generally accepted clinical
criteria.
In this paper, we report our success in developing such algo-

rithms by comparing the tracking capability of three different
dynamical machine-learning frameworks: dynamic neural net-
works (DNNs), dynamic support vector machines (DSVMs),
and hidden Markov models (HMMs). We show that the choice
of dynamic rather than static machine learning algorithms al-
lows us to exploit the time-varying nature of tremor and dyski-
nesia to accurately detect these disorders in the presence of un-
scripted and unconstrained voluntary movements.

II. ALGORITHM DESIGN SPECIFICATIONS

In this section, we summarize the functional specifications
and signal processing tasks for the algorithm.

A. Functional Specifications

Sensor Data: The algorithm will process multiple sources of
data acquired concurrently from wearable sensors. The sensor
data will include both information about muscle activation via
surface electromyographic (EMG) sensors, as well as body
movement and position as tracked by triaxial accelerometers
(ACC). The algorithm will also require a minimal number
of sensors on the body and be relatively insensitive to minor
differences in sensor placement that result from anatomical
differences between subjects or test/re-test applications.
Disorder Tracking: The algorithm will provide a temporal

history of the presence of tremor and dyskinesia, as well as a
severity rating, based on standardized clinical outcome mea-
sures derived through expert annotation of video recordings.
The beginning and end of each movement disorder occurrence
will be identified with a resolution of 1 s to enable clinicians to

closely monitor rapid changes in movement disorder severity,
which are a common complication of advanced PD.
Activity Conditions: The algorithm will process sensor data

acquired during unconstrained activities of daily living in the
home environment. It will function equally well during sitting,
standing and walking mobility states. This requirement avoids
the inconvenience of imposing scripted tasks or standardized
test movements on the subject, and thus best approximates the
intended clinical usage of the algorithm. A preponderance of
the movement disorder studies that have resulted in wearable
monitoring solutions have been constrained to these operating
conditions so as to simplify the tracking task of the algorithm
[5]–[8].
Training: The algorithm will track movement disorders in

subjects whose sensor data did not contribute to the training
phase of the algorithm. This specification eliminates the need
for extensive and costly retraining for each new subject. While
some previous algorithms for tracking individual disorders (e.g.,
for tracking tremor in [5]) have possessed this attribute, more re-
cent algorithms for trackingmultiple disorders (e.g., for tracking
tremor and dyskinesia in [7]) required additional training for
each new subject.
Error Rate: The specification for an upper limit of allowable

error rates is set at 10%. Error rates will be derived based on the
widely used procedure of comparing algorithm outputs to expert
annotations of video recordings [5], [7]. Note that we tolerate
a wider range of error rates than that achieved in previously
reported studies (e.g., in [7] and [8]) because our algorithms
will operate under significantly less constrained conditions than
these others.

B. Signal Processing Tasks

The signal processing solutions will need to resolve the fol-
lowing three tasks.
Distinguishing Tremor From Voluntary Movements: Ac-

celerometer and EMG recordings of tremor are manifested
by periodic activity in the 4–6 Hz frequency range. Although
most typical voluntary movements do not present with such
characteristic frequencies, evidence of tremor can be attenuated
or obscured in the presence of voluntary movements, as demon-
strated for the signal from the ACC sensor in Fig. 1. In these
situations, the signal processing routines must overcome the
task of detecting the underlying periodicity of tremor despite
the contaminating influence of voluntary movement in one or
both of the EMG and ACC sensor modalities.
Distinguishing Dyskinesia From Voluntary Movements: A

key signal processing task is to distinguish between rapid
changes in the ACC recordings caused by dyskinesia from
those produced by rapid voluntary movements. Fig. 2 provides
an example of one such type of movement. Here, ACC sensor
signals recorded from a patient feeding himself in the absence
of dyskinesia are compared to ACC sensor signals from the
same limb during dyskinesia. Fig. 2(a) demonstrates that both
types of movements produce similar waveforms. However,
closer inspection of the corresponding power spectral densities
[Fig. 2(b)] demonstrates that dyskinetic movements may have
significant frequency components as high as 8 Hz [2], whereas
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Fig. 1. (a) Triaxial ACC signals recorded from the wrist extensor site during
resting tremor while sitting, and (b) ACC sensor signals collected from the
wrist extensor site during kinetic tremor recorded while the patient was volun-
tarily moving his arm. In the absence of movement as in (a), the identification
of tremor is straightforward and depends on the recognition of the periodicity
that characterizes movements due to tremor; however, the presence of the much
slower and more energetic voluntary movement in (b) can obscure the period-
icity of tremor.

Fig. 2. (a) One channel of the ACC signals recorded by the sensor above the
wrist extensor muscle while the subject performed voluntary movement and ex-
perienced dyskinesia, respectively. (b) The power spectral densities associated
with the signals shown in (a). From these PSDs, we can tell that energy during
dyskinesia is concentrated in the higher frequencies, whereas energy during vol-
untary movement is concentrated in the lower frequencies.

voluntary movements do not. This key difference will be ex-
ploited by the signal processing routines when developing the
tracking algorithm for dyskinesia.
Distinguishing Tremor From Dyskinesia: A key signal

processing task is to distinguish between the near-sinusoidal
3–6 Hz characteristic of the tremor ACC signal from the gen-
erally aperiodic and higher frequency content of the dyskinesia

Fig. 3. Signals recorded from the ACC sensors above the wrist extensor muscle
in patients experiencing tremor (top row) and dyskinesia (bottom row). In the
ACC sensor signals, tremor presents as a sinusoidal wave with periodicity in
the 3–6 Hz range, whereas dyskinesia produces aperiodic movements with no
fundamental frequency.

Fig. 4. Signals recorded from the ACC and EMG sensors above the wrist ex-
tensor muscle in patients experiencing tremor (top row) and dyskinesia (bottom
row). In the sEMG sensor signals, tremor produces regular bursts of energy at
the same fundamental frequency seen in the ACC signals, whereas dyskinesia
is represented by sporadic bursts of energy that vary in amplitude, duration, and
time between bursts.

ACC signal (see Fig. 3). For the EMG sensor data, the task
is similar: the periodic bursts associated with tremor must be
distinguished from the more randomly distributed noise-like
bursts of dyskinesia (see Fig. 4).

III. DYNAMIC LEARNING STRUCTURES

Our approach to tracking tremor and dyskinesia is twofold:
first, design a dynamic learning algorithm that can track the
presence and absence of these disorders using EMG and ACC
sensor data; and second, track their severity by analyzing filtered
versions of the ACC signal energy. We implemented dynamic
learning algorithms rather than their static counterparts in order
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Fig. 5. Diagram of the DNN used to recognize tremor. There are seven input
nodes, four hidden nodes, and one output node. Each FIR filter in the hidden
layer has five weights, whereas each filter in the output layer has one weight.
The DNN used to recognize dyskinesia is structured similarly, with five input
nodes, two hidden nodes, and one output node.

to enable the algorithm to learn not only patterns of signal vari-
ation associated with the involuntary movements, but also to
learn how those patterns may change over time. The superposi-
tion of voluntary and involuntary movements necessitates such
an approach: a disorder clearly present at one point in time may
be obscured by voluntary movement in the next.
We adapted three types of dynamic learning structures:

DNNs, DSVMs, and HMMs. Each of the three types represents
a different approach to the classification problem: HMMs
classify sequences of features probabilistically, whereas DNNs
divide the feature space using a series of linear hyperplanes,
and DSVMs a series of nonlinear hyperplanes.
For each approach, we developed two separate classi-

fiers—one to detect tremor and one to detect dyskinesia—to
better address the unique challenges presented by the identi-
fication of each disorder. Below, we discuss how we adapted
each of these structures to track tremor and dyskinesia. In later
sections we compare their performance to determine whether
any one structure is superior for these applications.

A. Dynamic Neural Networks (DNNs)

Two DNNs were used to detect the presence/absence of
tremor and dyskinesia, respectively. Both networks were
trained using backpropagation with learning rate over
1000 iterations.
1) DNNs for Tremor: We developed a two-layered dynamic

neural network (DNN) with one hidden layer and an output
layer for tracking the presence/absence of tremor, as illustrated
in Fig. 5. Each of the four hidden nodes, in Fig. 5, applies the
weights of a five-point FIR filter to time-advanced and time-de-
layed versions of four of the ACC-based and all three of the
EMG-based signal features discussed in Section IV.
The values of the coefficients associated with each FIR filter

were learned during the training phase. The training epochs

were carefully chosen to be representative of the different man-
ifestations of both tremor and dyskinesia during unscripted ac-
tivity. Each epoch consisted of 6 s of signal data collected from
the hybrid sensor placed above a particular muscle on the dom-
inant limb. For the DNN designed to detect tremor in the arm,
the sensor was placed above the wrist extensor muscle; for the
DNN designed to detect tremor in the leg, the sensor was placed
above the tibialis anterior muscle in the shin. The choice of these
particular sensor sites was based on the fact that, in our database
as a whole, tremor and dyskinesia tended to manifest most often
at these particular sites; we also found the dominant limb tends
to exhibit a larger variety of voluntary movements.
2) DNN for Dyskinesia: We developed a two-layered net-

work with two hidden nodes to track dyskinesia, similar to the
DNN designed to recognize tremor shown in Fig. 5. Each hidden
node applies the weights of a five-point FIR filter to time-ad-
vanced and time-delayed features calculated from the input data.
Only the five ACC-based features (see Section IV) were used
as inputs because we found it difficult to reliably discern differ-
ences between EMG signals corresponding to dyskinesia and
those corresponding to voluntary movements. The dyskinesia
DNN was trained with the same training data as the tremor
DNN.

B. Dynamic Support Vector Machines

As was the case for DNNs, two separate DSVMs were de-
signed to detect tremor and dyskinesia, respectively.
1) DSVM for Tremor: The tremor DSVM was designed to

use the same input signal features as our tremor DNN and to
also have the same level of computational complexity. We also
used the same training data for the tremor DSVM as for the
tremor DNN. We investigated the use of a variety of different
kernel functions, specifically linear, polynomial, sigmoid, and
radial basis functions. For each kernel function, we adjusted
the associated parameters, and determined the global error rate
over the training dataset. Because there are many choices of pa-
rameters and kernel functions that will produce very low error
rates over the training database, additional cross-validation was
required to determine which choice of parameters and kernel
function will produce the DSVM transformation that best gen-
eralizes over the testing dataset. As a result of these processes,
we selected a DSVM transformation that incorporated a radial
basis function with a trade-off coefficient of 1 and scale factor
of 0.25; the final DSVM transformation included 86 support

vectors.
2) DSVM for Dyskinesia: The dyskinesia DSVM was de-

signed to use the same input signal features as our dyskinesia
DNN and to also have the same level of computational com-
plexity. We also used the same training data for the dyskinesia
DSVM as for the dyskinesia DNN. Our results led us to select a
DSVM transformation that used a sigmoid basis function with
a trade-off coefficient of 0.125 and scale factor of 0.5; the
final DSVM transformation included 80 support vectors.

C. Hidden Markov Models

Whereas DSVMs and DNNs seek to find the hyperplane that
best divides the feature space associated with two signal classes,
HMMs seek to find the probability distribution that governs the
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Fig. 6. Diagram of the HMMs used to recognize tremor and nontremor seg-
ments in the isolated word recognizer framework from Rabiner [12]. Model is a
left-right model with five total states. Number of states was fixed at the number
of windows, such that moving from one window to the next always represented
a state transition.

input patterns produced by each signal class. HMMs thus rep-
resent a more statistical approach to classification.
We used the HMM-based isolated word recognizer frame-

work described by Rabiner [12] as the starting point for ad-
dressing the dyskinesia and tremor tracking problems. In this
framework, two competing HMMs were created: one to de-
scribe intervals containing the phenomenon of interest (e.g.,
tremor), and the other to describe intervals not containing this
event. For each new interval with unknown disorder state, signal
features are calculated and each model produces a probability
of observing those features conditional upon either the absence
or presence of the disorder. Depending upon which model pro-
duces the higher probability, the phenomenon of interest is de-
clared to be present or absent.
In our case, each disorder-present and disorder-absent HMM

utilizes features computed over five consecutive 2-s windows of
the data, each with 1-s overlap with the next one. A hidden state
(presence or absence of disorder) is represented by the signal at
each window position and moving from one window position to
the next can be thought of as representing a state transition, as
illustrated in Fig. 6. Given such a model for the presence of
tremor, suppose we wanted to know the probability that the fea-
tures computed from five consecutive window positions (with
middle-window position at time ) represent the observation of
a tremor process. Under the Markovian assumption, we can for-
mulate this probability as a product of five observation proba-
bilities as derived from a training data set.
1) HMMs for Tracking Tremor: The observation probabili-

ties [12] associated with both the tremor and nontremor models
were computed using the training data. The features were indi-
vidually quantized into two bins, with the cutoff for each bin
set by a machine learning classifier dividing the range of pos-
sible values between those that were more likely to indicate
tremor and those more likely to indicate nontremor. This proce-
dure was performed for each of the features used by our tremor
HMM-based algorithm to divide the seven-dimensional feature
space into possible symbols.
2) HMMs for Tracking Dyskinesia: As with tremor, we

created two HMMs: one to describe intervals containing
dyskinesia, and the other to describe intervals not containing
dyskinesia. Features for any particular observation time were
computed using the same windowing strategy as for the tremor
HMMs. Feature quantization was also done in the same way as
for the tremor models except that there were only five features,
all derived from the ACC signals. In total, the five-dimensional
feature space was divided into possible symbols.

IV. CALCULATION OF BASELINE SIGNAL FEATURES

In total, eight signal features were computed from the ACC
and EMG sensor signals and used as inputs to the dynamic ma-
chine learning algorithms designed to identify the absence/pres-
ence of tremor and dyskinesia. Note that the tremor detection
algorithms used one subset of features, and the dyskinesia de-
tection algorithms used a second subset.
All features were calculated over a 2-s window, with 1-s

overlap between adjacent windows. The features are described
in detail below.

A. ACC Lowpass Energy

is the lowpass energy below 1 Hz in an ACC epoch
after subtraction of the mean epoch value to remove the
gravity component. A high value (in accordance with a learned
threshold) for may be used as an indicator of the possible
presence of significant voluntary activity since neither tremor
nor dyskinesia contributes significantly to this portion of the
ACC spectrum. We experimented with a variety of cutoff
frequencies (ranging from 0.5 to 3 Hz in 0.25 Hz increments)
for this feature but found that our learning algorithms gave
their best performance with a 1 Hz cutoff. This feature is used
in our algorithms for both tremor and dyskinesia.

B. ACC Highpass Energy

is the energy above 1 Hz in an ACC epoch. A high
value (in accordance with a learned threshold) for may be
used as an indicator of the possible presence of either tremor
or dyskinesia. Again, we experimented with a variety of cutoff
frequencies (ranging from 0.5 to 3.0 Hz in 0.25 Hz) but found
that our learning algorithms gave their best performance with
a 1 Hz cutoff. This feature is used in our algorithms for both
tremor and dyskinesia.

C. ACC Very-Highpass Energy

is the energy above 15 Hz in an ACC epoch. A high
value (in accordance with a learned threshold) for may be
used as an indicator of the possible presence of dyskinesia since
neither tremor nor most voluntary movements are anticipated to
contribute significantly to this feature. We experimented with
a variety of cutoff frequencies (ranging from 10 to 20 Hz in
0.5 Hz increments) for this feature but found that our learning
algorithms gave their best performance over the training data set
with a 15 Hz cutoff. This feature is used only in our algorithms
for dyskinesia.

D. ACC Lag of First Autocorrelation Peak

is defined as the location of the first positive side lobe
of the autocorrelation of an ACC epoch provided there are also
additional peaks in the autocorrelation at one or more positive
integer multiples of that lag; otherwise is set to zero. The lo-
cation of the first positive side lobe in the autocorrelation serves
as an indicator of the fundamental frequency of the underlying
signal and was used to detect the presence of periodicity in an
epoch. This feature is used in our algorithms for both tremor and
dyskinesia.
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E. ACC Height of First Peak in Autocorrelation

is defined as the ratio of the height of the first positive
side lobe in the autocorrelation of an ACC epoch to the height
of the main lobe found at zero lag. A high value for may be
used as an indication that at least two significant portions of the
epoch are similar in shape to each other. Along with , this
feature can be used to help discriminate between the periodic
characteristics of tremor from the aperiodic characteristics of
both dyskinesia and many voluntary movements. This feature
is used in our algorithms for both tremor and dyskinesia.

F. EMG Energy

is a measure of the root mean square energy in an EMG
epoch. Since significant energy in the EMG signal is an indi-
cator of force generation in a specific muscle [13], a high value
for may be used to suggest that movement may be taking
place. However, it is important to note that if a movement oc-
curs without the force contribution from a particular muscle, an
EMG sensor placed over that muscle will not detect evidence
of movement. This feature is used only in our algorithms for
tremor.

G. EMG Lag of First Peak in Autocorrelation

is defined as the location of the first positive side lobe of
the autocorrelation of an EMG epoch and was computed in a
manner similar to that of described above. This feature is
used only in our algorithms for tremor because the EMG signal
produces repeated bursts of energy approximately every 1/3 to
1/6 of a second, which are identifiable by the strong positive
peaks in the autocorrelation function. In contrast, dyskinetic
movements do not produce such periodic bursts of energy.

H. EMG Height of First Peak in Autocorrelation

is defined as the ratio of the height of the first positive side
lobe in the autocorrelation of an EMG epoch to the height of the
main lobe (at zero lag) in the autocorrelation. The empirically
verified assumption behind this feature is that a higher propor-
tion of the EMG signal’s energy tends to be concentrated at the
first side lobe of the autocorrelation for periodically repeating
bursts of energy as seen in epochs containing tremor. This is
in contrast to the EMG signal energy observed in the presence
of aperiodic movements, including dyskinesia and most volun-
tary movements. This feature is used only in our algorithms for
tremor.

V. ALGORITHM PERFORMANCE METRICS

Discrepancies between the output of the classification algo-
rithm and expert annotation were evaluated on the basis of sen-
sitivity (which describes the ability of the algorithm to correctly
identify a movement disorder when it is present) and specificity
(which describes the ability of the algorithm to correctly iden-
tify all instances when the movement disorder is absent) [14].
Other studies [8] also use accuracy as a single metric to com-
pare the performance of their algorithms. Defined as the as the
ratio of the number of correct decisions (true positives and true

negatives) to the total number of decisions, accuracy can alter-
nately be written as

Here, is the fraction of the total seconds in the database in
which the disorder is present, is algorithm sensitivity, is
the fraction of total seconds in the database in which the disorder
is absent, and is algorithm specificity.
From this formulation we can observe the dependence of the

accuracy on the proportion of disorder present. This may be ac-
ceptable to judge a classifier over a database containing equal
amounts of all disorders of interest. However, for our database
of unscripted and unconstrained activities, we found unequal
proportions of tremor, dyskinesia, and intervals with no dis-
order (as we will see in Section VI). We also found that more
sedentary activities (such as reading, talking, or using a com-
puter) were more common than more vigorous activities (such
as walking). Reliance on accuracy could thus lead to biased
judgments of performance that favored algorithms which over-
reported the more common disorders, or which underperformed
during certain movement states.
With this consideration in mind we therefore developed a

global error rate in detecting a particular disorder within
the entirety of a given signal database. Global error rate is de-
rived from the ratio of the number of incorrect decisions (false
positives and false negatives) to the total number of seconds of
data in the signal database, i.e., . However,
to avoid the possible biases discussed previously, we assume
that the sensitivity and specificity values have stabilized over
the given database in such a way that if the amount of the data
in the database were increased, these values would remain the
same. Under this assumption, we can now use
for a conceptual extension of the original database and arrive at
the following general definition for the global error rate:

However, further normalizations to GER are required to ac-
count for the number of potential disorder states. Consider the
case of calculating for a tremor-tracking algorithm. This cal-
culation would be made over intervals with no disorder whatso-
ever as well as over intervals with dyskinesia. If the likelihoods
of error by the algorithm in these two types of intervals are sig-
nificantly different, the overall sensitivity of the algorithm will
change as the relative frequency (in the database) of intervals
without disorders is changed with respect to intervals with dysk-
inesia. Thus, the global error rate for this tremor tracking algo-
rithm should be calculated

Here, is the specificity calculated over database inter-
vals where no disorder is present and is the specificity over
intervals where the other disorder is present. We have now nor-
malized GER with respect to relative disorder frequency.
Lastly, we find that both sensitivity and specificity values for

tremor and dyskinesia are highly dependent on the subject’s
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broad mobility state classification, i.e., on whether the subject
is walking, standing, sitting, or lying down. For example, the
sensitivity of a tremor-tracking algorithm can be significantly
higher when the subject is sitting down in comparison to when
the subject is ambulating. As previously stated, the relative fre-
quency of these movement states in our database is not nec-
essarily representative of the relative frequency of movement
states in other PD patients. By normalizing the relative fre-
quency of thesemovement states, we produce the final definition
of the GER used to describe algorithm performance

Here, , and , respec-
tively represent the calculation of over only the data
where the subject is walking, standing, sitting or lying down.
Achieving an acceptably low global error rate does not al-

ways mean that all decisions made by the corresponding dis-
order tracking algorithm are credible. For example, poor algo-
rithm performance in the presence of a specific mobility state
can manifest in dense groupings of errors. Therefore, we also
devised an additional error rate—which we call the local error
rate (LER)—to measure the performance of our algorithms in
errors that are “too dense.” For the purposes of this paper, we
define the LER as the percentage of all possible 30-s intervals
defined over the database that have more than 15 errors within
them. For example, an algorithm would have an LER of 5%
when 5% of all 30-s intervals defined on a database have an
error rate of at least 50% and thus contain what we consider to
be dense errors.

VI. DATA ACQUISITION

A. Subjects

Two groups of subjects were tested (Table I): one (
with PD) provided a training data set for algorithm develop-
ment and the other ( with PD; controls) provided
a data set for testing the algorithms. The acquisition of separate
databases was implemented to demonstrate that the algorithms
are subject-independent and need not require pre-training for
each application. All of the PD patients were screened for mild
to moderately severe categories of Parkinson’s disease (Hoehn-
Yahr stages II–III while “on” and Hoehn-Yahr stages III–IV
while “off”) [15], complicated by motor fluctuations that in-
cluded mild to severe ranges of tremor and dyskinesia severity.
The control subjects were selected to be within the age range of
the patients and were screened for neuromuscular disorders, in-
cluding PD. Voluntary written informed consent was obtained
from each participant, in compliance with institutional review
board procedures.

B. Sensor and Sensor Placement Specification

Eight hybrid sensors (DelSys, Inc.) were placed at various
locations on the subjects’ arms, legs, and sternum as illustrated
in Fig. 7. Each of these hybrid sensor acquires and wirelessly
transmits three channels of triaxial ACC data and one channel of
EMG data, all sampled at 1 kHz (with appropriate anti-aliasing
filtering). A photograph of one of the sensors is provided in the
insert in Fig. 7. These sensors were designed for practicality

TABLE I
SUBJECT POPULATION CHARACTERISTICS

and ease of patient use while performing everyday activities. In
a real-world clinical application, however, it is desirable to have
each subject wear as few sensors as possible.
Initial feature extraction and algorithm development [14] led

us to conclude that it was possible to adequately track tremor
and dyskinesia using data from just two sensor locations. Those
sensors [denoted by stars in Fig. 7] are placed over the wrist
extensor muscle of the dominant symptomatic arm and the tib-
ialis anterior muscle in the shin of the dominant symptomatic
leg. Results reported in this study are derived from these two
locations.

C. Protocol

All of the subjects carried out unscripted and unconstrained
activities of daily living in a simulated home environment
for a continuous period of 3–4 h per subject to capture a
complete “ON–OFF” medication cycle for each patient. Experi-
mental sessions were continuously videotaped using fixed and
hand-held high resolution digital cameras, and then stored for
later annotation. Video and sensor data were synchronized by
generating a pulse tone recorded on the cameras audio channel.
Sessions were timed to begin approximately 1 h following the
patient’s first morning dose of anti-Parkinsonian medication.
The subjects were free to move about the environment without
coaching from the researchers or use of an activity script.
Activities were varied and included periods of sitting, standing,
walking, resting (lying down on a bed), preparing snacks,
eating, reading, writing, using the Internet, and conversing with
researchers and family members.

D. Annotation

Video annotation for scoring tremor and dyskinesia severity
was carried out by a team of movement disorder specialists con-
sisting of two neurologists, a nurse coordinator (both from the
Boston University Parkinson’s Disease Center), and a physical
therapist. This information provided the basis by which the clas-
sification algorithms were trained and tested. Tremor severity
was scored based on Item 20 (Tremor at Rest) and Item 21 (Ac-
tion or Postural Tremor) of theMotor Examination section of the
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Fig. 7. Locations of the eight wireless sensors worn by the subjects in our studies. The classifiers described in this paper rely on data from one hybrid sensor
(denoted by stars) to track the evolution of both tremor and dyskinesia in a particular limb. A picture of one of these wireless sensors is visible in the inset.
The sensor collects three channels of data from a triaxial accelerometer and one channel of surface electromyographic data.

Unified Parkinson’s Disease Rating Scale (UPDRS) [15]. Dysk-
inesia severity was scored based on the m-AIMS scale [16].
Both instruments use a five-point Likert scale where 0 corre-
sponds to the absence of the disorder and 4 correspond to the
most extreme disorder. Annotators identified the beginning and
end of each movement disorder severity occurrence with a res-
olution of 1 s, re-examining those sections where their annota-
tions disagreed. If no agreement was reached, the data point was
discarded. Each of the four limbs was scored separately.

VII. RESULTS

In this section, we discuss the performance of our algorithms
for tracking the presence and severity of both tremor and
dyskinesia.

A. Tracking Presence and Severity of Tremor

Table II summarizes the performance of our tremor-tracking
algorithms for three of the basic mobility states, based on DNN,
DSVM, and HMM frameworks. The performance of the algo-
rithms was evaluated in terms of the global and local error rates
that were described in Section V. We note that all the results
listed in Table II pertain to the case where all the testing data
was from the hybrid ACC-EMG sensor placed above the wrist
extensor muscle of the dominant arm; this is the same sensor
location used to train the various machine-learning algorithms.
Table II provides a summary of the comparative results of

the machine learning algorithms demonstrating that they are ap-
proximately equally effective at detecting tremor in the pres-
ence of a variety of basic mobility states, with a slight advan-
tage in favor of the DNN algorithm when both GER and LER
are considered.
Because the severity of movement disorders is important to

the clinician, we have also developed pattern classification tech-

TABLE II
COMPARISON OF TREMOR RECOGNITION IN DOMINANT ARM BY

DNN, DSVM, AND HMM ALGORITHMS

niques to identify all seconds in which tremor is recognized as
containing mild, moderate, or severe tremor. The severity level
estimation is based on a simple Bayesian maximum likelihood
classifier [4] applied to the ACC highpass energy fea-
ture. Our severity classifier used the category of “mild” tremor
for UPRDS rating of 1; “moderate” tremor for UPRDS rating of
2; “severe” tremor for UPRDS severity ratings of 3 and 4.
Table III shows that this Bayesian maximum likelihood clas-

sifier can be used to accurately distinguish between the different
severity levels of tremor by achieving a sensitivity and a speci-
ficity of greater than 95% for each severity level.

B. Tracking Presence and Severity of Dyskinesia

Table IV summarizes the performance of our machine
learning algorithms designed to track dyskinesia. The results
have the same general trends as those in Table II; we see again
that all three classifiers are of approximately equal efficacy.
As with tremor, we applied a simple Bayesian maximum like-

lihood classifier to to measure the severity of any detected
instances of dyskinesia. Table V shows that this classifier can
be used to distinguish between the different severity levels of
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TABLE III
TREMOR SEVERITY RECOGNITION PERFORMANCE OF BAYESIAN

MAXIMUM LIKELIHOOD CLASSIFIER

TABLE IV
COMPARISON OF DYSKINESIA RECOGNITION IN DOMINANT ARM BY

DNN, DSVM, AND HMM ALGORITHMS

TABLE V
DYSKINESIA SEVERITY RECOGNITION PERFORMANCE OF BAYESIAN

MAXIMUM LIKELIHOOD CLASSIFIER

dyskinesia (mild, moderate, and severe) with a sensitivity and
specificity of greater than 92% for each severity level.

C. Tracking at Other Sensor Locations

Because symptoms of PD can present differently in different
limbs at the same time, we conducted a further analysis to deter-
mine how our dynamic learning algorithms, which were trained
using sensor data acquired from the location corresponding to
the wrist extensor muscle, would perform on sensor data from
a different location, corresponding to the tibialis anterior (TA)
muscle. Specifically, we tested the DNN algorithms using the
TA sensor data from the entire testing database. In the case of
tremor tracking, we found a GER of 8.4% and LER of 3.6%. In
the case of dyskinesia tracking, we found a GER 10.7% and a
LER of 2.2%

VIII. DISCUSSION AND CONCLUSION

We have demonstrated that the machine learning algorithms
developed in this study were approximately equally effective in
tracking tremor and dyskinesia with a 1-s temporal resolution
during unscripted and unconstrained activities in a home-like
environment. Data were derived from a relatively small number

of hybrid ACC-EMG sensors worn by PD patients and controls
carrying out routine activities of daily living. In particular, we
found that global and local error rate performance metrics for
DNN, DSVM, and HMM algorithms averaged below 10%, with
the DNN algorithm achieving the best overall metrics. None of
these algorithms needed to be retrained using additional data
from the test subjects. The tremor and dyskinesia algorithms
are computationally simple enough so that their net execution
time on a typical commercially available laptop is of the same
order of magnitude as the duration of their input signals, thus
demonstrating that real-time implementations of the algorithms
are feasible.
These results support the likelihood of developing an ambu-

latory system for monitoring fluctuations in tremor and dyski-
nesia in patients with PD. This achievement will provide signif-
icantly greater temporal resolution and objectivity than is pos-
sible through the current standard of self-report measures such
as motor diaries. The proliferation of unobtrusive yet objective
measures of Parkinsonian symptoms should enable health care
providers to more effectively titrate anti-PD treatments, thus im-
proving the treatment of such movement disorders without un-
duly restricting the daily lives of their patients.
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