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INTRODUCTION

During the past decade, numerous efforts directed
at developing methods for quantitatively analyzing
needle EMG signals have been reported. Most ef-
forts have been concerned with computerization of
parameter measurements of the motor unit action
potential waveform. They essentially provide a
powerful and potentially objective means of per-
forming scientific and clinical measurements.
LeFever and De Luca (1978) originally reported a
technique which employed communication theory
concepts to decompose electromyographic (EMG)
signals into their constituent motor unit action

potential trains (MUAPTS). Details of the techni--

que and computer algorithms have been described
(LeFever and De Luca, 1982; Mambrito and De
Luca, 1983, 1984). This computer-aided operator-
interactive technique provided accurate measure-
ment of the concurrently active motor units’
discharge times and the ability to estimate their
time-changing firing rates, The firing rates of
motor units provide useful information about the
neuromuscular system and should be helpful in the

. ] « . .
diagnosis’ of clinical disorders. Accurate motor

unit discharge time information also allows for the
extraction of motor unit morphological informa-
tion via the trigger averaging of simultaneously ac-
quired concentric needle or cannula detected
signals. C

The concepts of separating an EMG signal into

its constituent MUAPTSs is presented in Fig. 1.
Development of the procedure has been focused by
its two main goals: to provide a tool-for resear-
chers to efficiently study motor unit pf*bperties and
behavior, and to assist clinicians in assessing and
monitoring the state of a patient’s neuromuscular
system. Development has also been constrained by
two major considerations: accuracy and conve-
nience of use.

Overall system accuracy is most important for it
provides the basis on which the results are judged
and determines the practicality of their subsequent
use. A philosophy of maintaining accuracy at a
level of 98% has been adopted. Lower accuracy
provides confusing and possibly deceptive infor-
mation that may lead to inappropriate clinical
diagnoses and scientific misstatements. All con-
templated modifications had to comply with the
accuracy requirement. B

Convenience of use is essential for the technique
to have any clinical feasibility and will determine
the amount of use the technique receives as a tool.
Convenience is determined by the amount of time
involved in acquiring suitable EMG signal data
and performing the decomposition. Modifications
have been made to the contraction protocols and
signal detection electrodes which increase the
percentage of data collections containing stable
EMG signals, thus reducing the time required to
obtain suitable data. Alterations have been made
to the data sampling and compression routines
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Fig. 1. A schematic representation of the decomposition of an
EMG signal into its constituent motor unit action potential
trains. (From De Luca et al., 1982)

which allow additional continuous data channels
to be acquired so that additional information can
be obtained. More efficient signal filtering algo-
rithms have been implemented to precondition the
~signals for the decomposition algorithm. Attempts
to increase the speed of the decomposition con-
sisted of improving the algorithms’ computational
efficiency and introducing rudimentary concepts
of artificial . intelligence to reduce required
operator interactions. In this chapter the decom-
position procedure is first reviewed, then the
modifications made to each facet of the procedure
are outlined. This is followed by descriptions of
the methods used to analyze the individual motor
unit firing times resulting from an EMG signal
decomposition and discussions of the importance
of the information obtained.

DECQMPOSITION REVIEW

The accurate determination of individual motor
unit activity and that of groups of concurrently ac-
tive motor units, requires the measurement of the
EMG activity associated with muscle contraction
using selective multichannel indwelling electrode

configurations. Suitably detected composite EMG
signals can be analyzed and separated into their
constituent MUAPTS by utilizing the EMG signal
acquisition and decomposition technique reported
by Mambrito and De Luca (1983, 1984). These
reports described procedures by which three chan-
nels of EMG signals are detected using a specializ-
ed quadri-filar indwelling electrode configuration
and a passband of 1—10 kHz. The three channels
of information are used to represent the motor unit
action potentials (MUAPs) arising from each
motor unit active in the immediate area of the elec-
trode. The detected EMG signals are initially
recorded on FM tape, then digitized, compressed
and placed in permanent digital storage. The
digital EMG signals are then decomposed into
their constituent MUAPTs.

Decomposition is performed by a computer-
based operator-interactive algorithm. The algo-
rithm scans the EMG signal and identifies
MUAPs. Each MUAP is then classified as being
created by a particular motor unit. This classifica-
tion is based on a comparison of the MUAP’s
shape to those of the templates of candidate motor
units and consideration of the probability of each
motor unit firing at the time the MUAP was
detected. The motor unit with the best combina-
tion of similar template shape and high firing pro-
bability is selected. Motor unit templates are
representative MUAP shapes for each candidate
motor unit. The selected motor unit’s template and
firing statistics are updated with each appropriate
MUAP classification. The selected motor unit’s
current template is then subtracted from the EMG
signal and scanning for the next MUAP begins.
This approximate removal of each identified
MUAP allows processing of the entire signal above
the specified scan threshold. Superpositions: of
several MUAPs are resolved into their component
motor unit templates by special routines. Operator
interaction is sought to determine the composition
of unknown waveshapes. The operator classifies a
questioned shape as a superposition of specific ex-
isting motor unit templates or as a new motor unit”
template. The use of three channels of information




for the representation of MUAP and motor unit
template shapes is critical to the successful classifi-
cation of candidate waveforms, for this provides
sufficiently unique representations of an individual
motoneuron’s MUAP to allow the firing times of
each different motor unit to be consistently and ac-
curately discriminated. A simplified flow chart of
the EMG signal decomposition algorithm is pre-
sented in Fig. 2. The main components are con-
nected by heavy black lines.

The decomposition procedure was proven ac-
curate by independently decomposing EMG
signals obtained simultaneously using two elec-
trodes separately inserted into a common muscle
volume. The signals from each electrode were then
independently decomposed. The firing times of
motor units present in both signals, determined by
each decomposition, were identical (Mambrito and

- De Luca, 1983, 1984). An example output, result-
ing from the decomposition of an EMG signal with
11 concurrently active motor units, is displayed in
Fig. 3. The EMG signals werk detected from a first
dorsal interosseous muscle during an isometric
ramped force contraction. The individual firing
times of each motor unit are represented by ver-
tical bars. The muscle force produced during the
contraction is shown as the solid black line.
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Fig. 2. Simplified flow chart of the decomposition algorithm.
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frequently.
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DECOMPOSITION MODIFICATIONS

As outlined earlier (LeFever and De Luca, 1982;
Mambrito and De Luca, 1983, 1984), the decom-
position procedure can be divided into four major
segments: signal acquisition, data sampling and
compression, signal conditioning, and the decom-
position algorithm. Modifications have been incor-
porated into each segment of the procedure to im-
prove the overall system performance in terms of
decreasing the time required to perform a decom-
position while maintaining the decomposition ac-
curacy.

Signal acquisition

The EMG signal acquisition system remains essen-
tially the same as described by Mambrito and De
Luca (1983, 1984). Three channels of information
are acquired to provide the necessary discrimina-
tion between the MUAPs of the contributing
motor units. However, two significant changes
have been made. A variety of electrode configura-
tions are now available. A certain configuration is
chosen to best suit the intent of the signal collec-
tion and the properties of the muscle studied. In
addition, a signal quality monitor is used to con-
stantly measure the amplitudes and slopes of the
detected MUAPs to ensure adequate signal content
and stability.

Originally, EMG signals were detected using
needles containing an electrode configuration con-
sisting of a cluster of four 75 pm diameter detec-
tion surfaces arranged in a square with approx-
imately 200 uym sides and located 2 mm from the
tip of the needle cannula. Currently, needles con-
taining electrode configurations of four 50 um
diameter detection surfaces arranged in a square '
with 150 um sides and located 7.5 mm from the tip
of the needle cannula, are also available for signal
acquisitions. Fig. 4 schematically shows the elec-
trode detection configurations available. The
potentials measured at each detection surface are
individually buffered and various combinations of
detection surface potentials (bipolar or mono-
polar) can be input to the differential -amplifiers.
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Fig. 3. Individual MUAPTSs of eleven concurrently active motor units are displayed along mth the corresponding muscle force. The
discharge times of each individual motor unit are depicted by vertical bars. The solid line represems the muscle force created.

whose outputs define the MUAPs for each of the
three channels. The second configuration has two
distinct features. First, the position of the detec-
tion surfaces (7.5 mm from the cannula tip) is bet-
ter suited for the electrode to be used for
macroEMG studies which are described more fully
later. Second, because of its smaller detection sur-
face areas and inter-surface distances it is con-
siderably more selective. It acquires EMG signals
composed of the contributions from fewer motor
units and'MUAPs which are more likely to be com-
posed of the contributions from fewer muscle
fibers per motor unit and therefore of shorter
duration. The result is an EMG signal which is
more easily decomposed. This configuration is
especially useful for studying EMG signals obtain-
ed during high level contractions in small muscles
where motor unit density is high. However, for

studying low to moderate level contractions of
larger muscles the original less selective configura-
tion is still preferred.

During data collection the signal quality of the
selective needle signals is now constantly surveyed
with the signal quality monitor equipment pack-
age. This equipment electronically monitors the
slope and amplitude of the selective needle signals
and visually indicates their levels by a light display.
A more complete description of this hardware may
be found in Stashuk (1985). Amplitude and slope
criteria are used to initially position the electrode
detection surfaces suitably close to at least one
muscle fiber of the motor units studied. Amplitude
values greater than 1 mV with slope values greater
than 6 V/s are typical limits. Such signal amplitude
and slope criteria ensure that suitable MUAPs of
substantial amplitude and slope are measured.




Data collection is not initiated until, at minimal
force, both the signal slope and amplitude criteria
are met. The monitoring continues throughout the
contraction to determine if the signals detected re-
main stable. Stable signals contain MUAPs whose
shapes do not change significantly and represent
the activity of a fixed population of motor units.
Signal instability is primarily caused by needle
movement or neuromuscular jitter. Therefore, if
the amplitude and slope criteria are not consistent-
ly met or exceeded throughout a contraction, ex-
cessive needle movement is assumed, the data is re-
jected and another collection is attempted.

Data sampling and compression

The detected EMG and force signals are recorded
on FM tape at a speed of 30 in/s. The analog
signals are then converted and transferred off-line
to digital storage. When the signal potential (on

any one of the three channels) is above an
Detection technique
A 2mm |-
or Quadripolar needle electrode
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I
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operator-set threshold, MUAPs are assumed to-be
present and the signal epoch is placed in permanent
digital storage. A complete time reference of
events is provided by also storing the amount of
time between stored signal epochs, represented by
the number of samples skipped. No information
pertinent to the decomposition process is lost. The
data collection-compression operation greatly
reduces the amount of digital storage and subse-
quent digital signal processing required to perform
a signal decomposition. By replaying the recorded
signals at reduced speeds, the collection-com-
pression algorithm indirectly sampled the three
. channels of data to be compressed at a rate of 50
kHz and also indirectly, simultaneously and con-
tinuously sampled one or two force signal channels
at a rate of 500 Hz. :
The data collection-compression algorithm has
been revised to increase its operational efficiency.
The overall program speed has been increased to

Bipolar (as. shown )
or
Monopolar connections

Fig. 4. Available needle electrode configurations with typical buffering connections.
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allow for the simultaneous continuous sampling
and storage of additional data channels and the use
of higher continuous data sampling rates. Current-
ly, the algorithm is capable of simultaneously col-
lecting and compressing three channels of data at
a 50 kHz indirect sampling rate and also con-
tinuously collecting three additional channels of
data, each at an individual indirect rate of up to 5
kHz. This has made possible the acquisition of ad-
ditional continuous EMG signals and force signals.
This capability has provided a means for studying
and comparing simultaneously acquired macro-
EMG potentials recorded from both a needle can-
nula and an overlying surface electrode (Stashuk
and De Luca, 1986).

Signal conditioning

The analog high pass filtering at 1 kHz, performed
during signal acquisition, is effective in substan-
tially reducing both the amplitude and the time
duration of slow rise time MUAP waveforms
recorded from fibers distant from the detection
surfaces of the electrode. However, it is sometimes
useful to further reduce the degree of superposi-
tion among MUAPs by further shortening their
time durations. In such cases, a 51 point symmetric
Hamming window, finite impulse response digital
filter was used. The filter chosen most often had a
2 kHz to 7 kHz bandpass.

Filtering with the Hamming windows required
significant amounts of time due primarily to the
filter length. An alternate method of reducing
MUAP durations and attenuating distant activity
consists of the use of first or second order dif-
ference filters (McGill and Dorfman, 1985; Usui
and Amidror, 1982). First order difference filters
essentially replace. the input waveforms with
estimates of their slopes or time differentials. Se-
cond order filters are equivalent to a second pass
through a first order filter. The main advantages
of difference filters are the small number of filter
coefficients used, which allow rapid output signal
computation (first order 2, second order 4), and
the effective reduction of MUAP durations which
are obtained. The equations presented by McGill

and Dorfman (1985) were modified as -shown
below to account for the higher than Nyquist
sampling rates used.

First order difference filter:

X, =Y

(+n

- Y (M

Second order difference filter:

X, = Yl+2n__ Yion— Y- Yion @)
where, Y, is the sampled raw data, X, is the

sampled filter data, n is a factor chosen between 1
and 5 to account for the greatér than Nyquist
sampling rate.

As n increases from 1 towards 5 the amount
of filtering performed is reduced. Second order
filtering more severely attenuates low frequehcy
MUAP content. Typically first order filters using
n equal to 3 produce MUAPs most suited for the
decomposition process. Results of .filtering are
displayed in Fig. 5. MUAPs which are superimpos-
ed and difficult to identify in the raw signal occur
individually in the filtered data and are easily iden-
tified. The main advantage of difference filtering is
its great computational efficiency.

Decomposition algorithm

As earlier discussed the decomposition algorithm
uses both MUAP shape and motor unit firing pro-
babilities to classify a candidate MUAP as belong-
ing to or being created by a specific motor unit.

The use of a combination of shape and temporal

information in the classification of detected
MUAPs, was suggested by the similarity of the
decomposition problem to a common problem-in

the field of communications: the determination of .

one of many signal sources for a received signal,

which uses maximum a posteriori probability

receiver theory (Van Trees, 1968).

The similarity although is not complete. The
decomposition problem has many other factors
controlling a correct classification. For this reason
MUAP classifications are not automagically made
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Ditference filtering effects
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Fig. 5. Unfiltered three channel representations of MUAPs are displayed at the top. The result of difference filtering these MUAPs
are shown at the bottom. MUAP durations are reduced and MUAP superpositions are more easily resolved. The numbers betweer,
the MUAPs are skipped interval markers. They represent the amount of time during which, the EMG signal was not stored. The

numbers over each NMUAP are motor unit assignment numbers.

by the algorithm unless the shape similarity be-
tween a candidate MUAP and the chosen motor
unit template are suitably close. A MUAP and a
chosen motor unit template are suitably close when
the quantitative measure of their shape similarity
(the distance measure) falls within an acceptance
region. When an automatic classification can not
be made, the algorithm goes into an interactive
mode. The operator is informed of the algorithms
determination of the most appropriate motor unit
choice and asked to respond. LeFever et al. (1982)
discuss in detail what considerations and possible
actions an operator has at this point.

Initially the size of the acceptance region was
fixed at the onset of the decomposition. It could be
manually adjusted by the operator during the
decomposition, but to do so was time consuming.
The fixed acceptance region was sometimes too
strict and other times too lax. Automatic classifica-

tion of a MUAP would not be made to the best
candidate motor unit when its template had poor
shape similarity, even when the MUAP was
detected when the firing probability for that motor
unit was high. The operator would be queried only
to agree with the algorithm’s choice, a con-
siderable waste of time. Conversely, a MUAP
assignment could be automatically accepted if the
distance measurement was within the fixed accep-
tance region even when based on firing statistics,
the assignment would be apparently erroneous.
This also would create a situation in which time-
consuming operator interaction was required.

A variable size acceptance region has now been
incorporated into the algorithm in an attempt to
rectify these situations. The acceptance region
becomes larger if the firing statistics support the
assignment and it becomes smaller if the converse
is true. The determination of whether the firing
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statistics support a classification or not is based on
the difference between the resulting interpulse in-
terval (IPI) and the mean IPI of the chosen motor
unit. This difference is expressed in units of stan-
dard deviations of the IPI for the chosen motor
unit. The variable acceptance region has con-
siderably reduced the number of interactions
sought with the operator allowing the decomposi-
tion to proceed more quickly without reducing the
accuracy of the process.

Several modifications have been made which
also affect the way.in which the decomposition
algorithm interfaces with the operator. The display
of the candidate motor unit templates and the
three channels of EMG signal currently being pro-
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cessed were rearranged to allow the operator to
monitor the ongoing classifications more easily
and respond to algorithm queries more quickly.
Algorithm modifications were made which allowed
the operator to suspend decomposition if needed,
and to resume the decomposition, at the same
state, at a later time. Also, the ability to restart the
decomposition at any previous time in the contrac-
tion to correct any possible misclassifications was
implemented. These features greatly increase the
perceived ease of decomposition. Fig. 6 shows an
example of a typical graphics screen during decom-
position. The information across the bottom is
displayed at the operator’s request when the
algorithm is seeking input and often provides in-
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Fig. 6. An example of the visual display presented to the operator during a signal decomposition. The middle of the display includes
the three channel representations of the MUAPs to be classified in this portion of the EMG signal. The numbers between the MUAPsg
represent the amount of time during which the EMG signal was not stored (the amount of time skipped). The current shapes of the
templates of the MUAPs of the candidate motor units are displayed at the top left and the corresponding elapsed time during the

contraction along with the file name is displayed at the top. The a

lgorithm automatically classified the MUAPs up to the disp]ayed

question mark. The operator was then queried for assistance. The operator responded with a request for pertinent statistical informa-
tion (displayed across the bottom), then manually classified the MUAP. in question. The algorithm then successfully completed the -
classifications for the rest of the currently displayed page automatically. Constant visual feedback of the algorithm’s selected
classifications is provided by the numbers placed at each MUAP peak. A plus sign next to the motor unit number indicates that
the MUAP was used to update the template of the MUAP of the motor unit to which it was classified.




formation needed to quickly determine proper
MUAP classifications.

General algorithm modlflcanons were made to
provide better documentation and to make more
efficient use of the buffering capabilities of a Vax
11/750 computer system. The data buffering
alterations decreased the amount of time required
to manipulate the collected EMG signals and
search for suitable MUAPs. It also allowed the
current segments of EMG signals being processed
to be more rapidly plotted on the graphics ter-
minals.

Up to a 50% reduction in the amount of time re-
quired to perform an EMG signal decomposition
has been achieved. Thus, current decomposition
times typically range from 30 s to 3 min/s of ac-
quired EMG data depending on its complexity and
" stability. These times are of course still not clinical-
Iy acceptable. However, with the application of

MU
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currently available specialized data acquisition
hardware, more efficient mathematical processors
and high speed graphics terminals, combined with
the implementation of additional artificial in-
telligence routines, clinical applicability is a dis-
tinct possibility,

INDIVIDUAL MOTOR UNIT FIRING TIMES
ANALYSES

The output of the decomposition algorithm pro-
vides accurate information about the recruitment
and firing times of individual motor units through-
out a contraction as is demonstrated in Fig. 7. The
individual firing times of four concurrently active
first dorsal interosseous motor units are repres-
ented by vertical bars. The corresponding muscle
force is shown as the solid black line. An example
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. Individual MUAPTSs of four concurrently active motor units, are displayed along with the corresponding muscle force. The

discharge times of each individual motor unit are depicted by vertical bars. The solid line represents the muscle force created.
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depicting the activity of only four motor units is
displayed for the purpose of clarity in the subse-
quent displays, which were produced using these
firing times and are discussed later in this section.
Such accurate temporal information provides a
basis for many useful subsequent forms of data
analysis. The actual firing times of the individual
motor units can be compared with those of other
motor units to test for the existence of syn-
chronous behavior. Discharge times used as syn-
chronous triggers in ensemble averaging applica-
tions result in estimates of concentric needle, can-
nula or surface electrode detected MUAPs. The in-
dividual motor unit firing times may also be used
to estimate motor unit firing rates. The firing rates
of the motor units may then be cross-correlated to
determine the amount of common modulation
which occurred during various contraction pro-
tocols.

INTERVAL

CROSS
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Synchronization studies

Synchronous behavior of motor units is considered
as the tendency for pairs of motor units to contract
with preferred relative latencies. Preferred laten-
cies are those which occur more often than would
be expected if the motor units were discharging in-
dependently.

Rigorous statistical methods are used to deter-
mine if cross-interval histogram peaks (Perkel et
al., 1967) infer statistically significant inter-
dependence or synchronization of motor unit
pairs. A cross-interval histogram clearly displaying
synchronization between motor units nos. 1 and 2
of Fig. 7, within the + 5 ms latency is shown in
Fig. 8. Cross-interval histograms represent the pro-
bability of one motor unit of a chosen motor unit
pair firing before or after the fifing of the other
motor unit. Flat histograms represent independent
discharge times. Peaks in the histograms reveal
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Fig. 8. An example cross-interval histogram with a peak showing considerable synchronous activity for a motor unit pair. The latency
range defines the width of the peak. Peak area is an indicator of the intensity of the synchronous behavior. The horizontal line
represents the 95% level of significance for one sided tests of the null hypothesis that the motor units of the chosen.palr are firing

independently.




preferred inter-discharge latencies. The solid line
across the histogram represents the 95% con-
fidence limit for a one sided test of rejecting the
null hypothesis of independent behavior of the
motor unit pair.

The latencies of the significant histogram peaks
and the latency ranges (peak widths) are computed
to describe the temporal relationships of the syn-
chronous behavior. The amount of synchroniza-
tion for each motor unit pair, over the determined
latency ranges, is expressed in normalized units.
The normalized units are calculated as the average
difference, over the latency range, between the
histogram values and the expected histogram
value, measured in units of expected standard
deviation (Griffith and Horn, 1963). The percen-
tage of motor unit pairs studied expressing syn-
chronous behavior can also be measured. The
overall amount of synchronous behavior in each
muscle studied is summarized by a synchronization
level. This level is calculated as an average nor-
malized unit value times the percentage of motor
unit pairs which had interdependent discharge
times.

Measurements of the amount of synchronous
motor unit firing behavior, during a variety of
force protocols, in a number of human muscles,
have been made. Muscles studied include: first
dorsal interosseous (FDI), deltoid, tibialis anterior
(TA), extensor carpi radialis longus (ECRL), ex-
tensor carpi ulnaris (ECU), extensor pollicis longus
(EPL) and flexor pollicis longus (FPL). These
measurements indicated that more than 40% of the
motor unit pairs examined exhibited synchroniza-
tion at some time during the contraction unlike the
results of Kranz and Baumgartner (1974) and
Shiavi and Negin (1975) for similar contraction
protocols. The latencies of the synchronous behav-
ior were most often within £ 5 ms and they had an
average latency range of about 4 ms. Synchroniza-
tion at longer latencies (< =5 or > +5 ms) also
occurred, but to a lesser degree. At similar contrac-
tion levels, the deltoid muscle showed lower
amounts of synchronization than the FDI which
had lower amounts than the TA. Synchronization

D. Stashuk and C.J. De Luca | 49

level increased with contraction level in the deltoid
and FDI. The analysis of motor units in synergist
(ECRL and ECU) and antagonist (FPL and EPL)
muscle pairs revealed a greater interdependence of
firing times for motor unit pairs chosen within
rather than across the muscles, although clear. in-
dications of synchronization between motor units
pairs chosen across muscles were commonly evi-
dent. The possible clinical significance of various
amounts of synchronous behavior is yet to be
determined.

Ensemble averaging concentric needle, cannula

. and surface detected signals

When large detection surfaces are used for the
recording of EMG signals, or during high levels of
force, individual MUAPs are usually detected
superimposed along with the action potentials of
other active motor units. Estimates of their true
detected shapes are only available via the ensemble
averaging process. During ensemble averaging, the
uncorrelated ¢ontributions of other active motor
units are reduced. Thus, an ensemble averaged
MUAP is an estimate of the MUAP, as detected by
the detection surfaces used, of the individual
motor unit whose discharge times were used to ex-
tract it. The larger the number of triggers used for
the averaging process, the better the resulting
estimate.

When concentric needle, cannula or surface
detected EMG signals are simultaneously acquired
along with the multi-electrode signals, the dis-
charge times of the individual motor units obtain-
ed from the decomposition process can be used as
triggers for ensemble averaging. Such ensemble
averaging can produce clean concentric needle
MUAPs, and cannula or surface detected macro-
MUAPs (Stalberg, 1983). A MUAP corresponding
to each motor unit whose discharge times were
tracked during the decomposition is available.’
Motor units active only at high levels of contrac-
tion can be studied and compared with other lower
threshold units using this data. :

Cannula and surface detected macroMUAPs re-
present the electrical activity of most of the fibers
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of a motor unit and therefore contain information
that reasonably estimates the size of the individual
motor unit whose discharge times are used for the
ensemble averaging process. The motor unit size is
related to the peak-to-peak voltage of the ensemble
averaged MUAPs, but is more directly dependent
on its area (Nandedkar and Stalberg, 1983).
Ensemble averaged concentric needle potentials
represent the actual MUAP shapes of individual
motor units better than single event recordings.
The shapes are more suitable for clinical analysis
because the background noise, from other active
motor units, has been diminished by the averaging
process.

Cannula signals were simultaneously detected
from an FDI muscle along with multichannel selec-
tive surface signals during an isometric contraction
following a trapezoidal shaped trajectory with
10% MVC/s sides and a 5 s long plateau at a 40%
MVC level. The selective surface signals from this
contraction were used by the decomposition al-

Mo E ) mean [F1L2S?
# ¢! triggers used 4SC

P.P. voitage (mv): 0.B58E+ 0O

.
1
!

085— 050~
|

S A N

gorithm to determine the individual firing time

" histories of eight motor units. The histories of four

selected motor units are displayed in Fig. 7. Fig. 9
displays the four macroMUAPs corresponding to
the motor units whose discharge times are shown
in Fig. 7. The peak-to-peak voltages and macro-
MUAP areas are given in Fig. 9 along with the
motor unit’s mean IPI. Fig. 9 along with Fig. 7
provide an opportunity to directly compare motor
unit sizes with their recruitment threshold and fir-
ing time.behavior.

This collective view clearly shows that the
smaller, earlier recruited motor units (no. 1 and
no. 2) fire more rapidly, while the larger, later
recruited motor units (no. 3 and no. 4) fire more
slowly. This demonstrates an apparent paradox in
motor unit firing behavior, at least during
isometric contractions with slowly changing or
constant force levels. The smaller, earlier recruited
motor units are usually composed of slow twitch
fibers yet they fire more rapidly than the larger,
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Fig. 9. Four macroEMG potentials estimated from ensemble averaging a cannula detected EMG signal. The cannula signal was
detected during a contraction of a FDI muscle along with selective surface multi-channel signals. The corresponding individual motor
unit firing times used as triggers for the averaging were obtained via EMG signal decomposition of the multichannel signals and are
displaved in Fig. 7. The area and peak-to-peak voltages of the macropotentials are also displayed.



" later recruited motor units which are usually com-
posed of fast twitch fibers (see chapter 8 of this
volume). Clinically, any changes to the control
properties of motor units, which can be studied
with signal decomposition and ensemble averaging
techniques as outlined above, could prove to be
significant. Nonetheless, the ability to simul-
taneously obtain ensemble averaged concentric
needle potentials or macroMUAPs, for groups of
motor units, typically 5—8, would be clinically
useful.

Motor unit firing rate estimation ‘
The firing times of an individual motor unit may
also be used to estimate the motor units firing rate
and to map any firing rate fluctuations as a func-
tion of time. We use one of two methods to esti-
mate a motor unit firing rate. One method models
the MUAPTSs as unity height Dirac delta impulse
trains. The impulse trains are then sampled at fixed
intervals. The resulting zero-one sequences are
then convolved with smoothing filters of fixed
length. The output of the convolution process
represents the firing rate estimates. The other
method uses the inverse of a weighted average of
a fixed number of IPIs at each firing of the motor
unit as an estimate of the firing rate. These
estimates are then linearly interpolated to provide
the sampling resolution desired for time mapping
of the firing raie estimates. For estimating a firing
rate at a specific point in time, both methods use
future and past firing time information. Common
weighting sequences used for convolutions and
averaging are Hamming, Hanning or rectangular.
The symmetry of these sequences ensures that
equal amounts of future and past information are
used. Hamming and Hanning data windows are
well suited because they apply the greatest weights
to the motor unit firing times or IPIs closest to the
corresponding time of the estimate and smaller
weights further away from the time of the esti-
mate.

The firing intervals of motor units may be
modelled as renewel processes with low coeffi-
cients of variation. Thus, firing rate estimates filter
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out both some stochastic process variability and
some bias modulations in the excitability of the
motor unit. A fixed length of time over which an
estimate is based can therefore determine the ac-
tual temporal (spectral) content of the modulation
variation tracked, but the amount of statistical er-
ror present in each estimate will be variable and
dependent on the firing rate of the motor unit. On
the other hand, if a fixed number of IPIs are used
to obtain an estimate, a constant statistical error is
present in the estimate; however, a variable amount
of temporal smoothing (filtering) is performed,
depending on the firing rate of the motor unit.
Determination of the best method, convolving
over a fixed period of time or averaging a fixed
number of IPIs, requires further study and may
very well be dependent on the type of analysis
ultimately to be performed.

Fig. 10 displays individual motor unit firing rate
estimates obtained using the firing times of the
FDI motor units displayed in Fig. 7. The firing
rates shown were estimated by convolving a fixed
length (400 ms) Hamming window with the zero-
one sequence created by sampling the MUAPTs
modelled by unity height Dirac delta impulse trains
at 10 ms intervals. Evident in the figure are the
consistently higher firing rates of the earlier
recruited motor units compared to the later re-
cruited motor units. The clinical relevance of
motor unit firing rates and firing rate variability is
an area that needs further investigation.
Common drive measurements -
Cross-correlation analysis of suitably bandpass
filtered firing rate estimates can provide informa-
tion about the degree of commonality in the mod-
ulation of the net excitation of selected motor unit
pairs. Successful cross-correlation analysis re-
quires at least 98% accurate EMG signal decom-
positions for consistent results (Shaivi and Negin,
1973). This type of analysis has led to the deter-
mination of common drive (De Luca et al., 1982;
De Luca, chapter 8 of this volume).

Cross-correlation analysis is performed by selec-
ting an'interval during the contraction of at least
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S s duration. Whenever possible, the interval is
selected at a time when no additionally recruited
motor units are observed. Within this interval, the
motor unit firing rate estimates are then processed
to remove the DC component so that only the fluc-
tuations are analyzed. This is achieved by band-
pass filtering with a digital filter algorithm and
then removing any remaining mean value. The
filter algorithm used has a low pass cutoff frequen-
cy of 0.75 Hz with a 24 dB/octave low pass rolloff
and a high pass cutoff frequency of 10 Hz with a
12 dB/octave high pass rolloff. The discrete
Fourier transforms of each filtered record are then
computed using a fast Fourier transform algo-
rithm. The cross-correlation between pairs of fir-
ing rates is obtained by multiplying the discrete
Fourier transform of one element of the pair with
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the -complex conjugate of the discrete Fourier
transform of the second element of the pair, and
then taking the inverse transformation of the pro-
duct. The cross-correlations have a resolution
which depends on that of the firing rate estimates.
Typically the resolution is 10 ms.

The results of a cross-correlation analysis per-
formed with FDI motor unit pairs is displayed in
Fig. 11. The pairs were selected from the motor
units whose firing rate estimates are displayed in
Fig. 10. The results show significant amounts of
cross-correlation with consistent near zero lags.
This is a strong indicator of the common drive of
motor units. Such measurements have been made
over a wide range of muscles and during a variety
of contraction protocols. Common drive among
the motor units of a muscle is consistently found
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Fig. 10. The individual motor unit firing times displayed in Fig. 7 were converted to continuous time, firing rate estimates by convolv-
ing their corresponding MUAPTS with a 400 ms Hamming window and are pictured. The motor unit firing rate plot for each motor
unit, scaled in pulses/s (PPS), is represented by different dot-dashed lines and numbered accordingly. The corresponding muscle
force scaled in % MVC is depicted by the solid black line. ’
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Fig. 11. The results of cross-correlating pairs of motor unit firing rate estimates are shown. The firing rate estimates displayed in

Fig. 10 were used.

and common drive between motor unit pairs
chosen across muscles has also been measured (De
Luca and Mambrito, 1987). Common drive mea-
surements are higher in tibialis anterior muscle
with a mean peak cross-correlation value of
0.72 + 0.13 than in first dorsal interosseous mus-
cle which has a mean value of 0.6 = 0.16 (Kamen
et al., 1987). Common drive has also been found
in patients with clinical disorders (see Jabre,
chapter 17 of this volume). However, the overall
clinical relevance of common drive measurements
must be further investigated.
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