
I D 

IMPROVED DECOMPOSITION OF INTRAMUSCULAR EMG SIGNALS 
s. Hamid Nawab', Robert Wotiz', Lorin Hochstein l and Carlo 1. De Luca2 

College of Engineering,
 
Boston University
 
Boston, MA 02215
 

ABSTRACT 

We present a framework, initial implementation, and 
experimental results for the decomposition of 
intramuscular electro myographic (EMG) signals. A multi­
channel EMG signal from an electrode inserted into a 
muscle may be modeled as a sum of N quasi-periodic 
pulse trains. Typically, N E [1,20]. Treating the occurrence 
of pulses within a train as an interval process, we use MAP 
receiver techniques to initiate and track the trains. 
Employing an object-oriented program architecture 
enables us to experiment with signal processing strategies 
to deal with pulse overlap, track merging, track extension, 
and re-classification of misclassified detections. The initial 
implementation is already performing more accurate 
decomposition than the best system predating it. 

1. INTRODUCTION 

The process by which the brain causes muscles to produce 
force is not yet ful1y understood by researchers. This 
process is mediated by the motor control system, a 
complex network of interconnected neurons. There are a 
large number of research areas that depend on the study of 
the motor control system, ranging from the study of 
muscular disorders and diseases such as (potential1y fatal) 
spasmodic dysphonia to the effects of zero-gravity on the 
human body. 

Muscle fibers are stimulated by neurons whose cel1 
bodies are located in the spinal cord. These muscle fibers 
together with the motor neuron are referred to as a motor 
unit. To study the firing patterns of motor units, a multi­
channel electrode is inserted into the muscle, which 
records an intramuscular EMG signal. When the muscle 
fibers near the electrode contract, the electrode records a 
pulse, known as a motor unit action potential. 
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Fig. 1 Schematic of EMG pulse tracking (Courtesy of 
NMRC, Boston University) 

Throughout a muscle contraction, the motor units fire 
repetitively, generating motor unit action potential trains. 
An electrode will detect pulses from several nearby fibers. 
Some fibers will belong to the same motor unit, and some 
will belong to different motor units. Therefore the 
recorded EMG signal is a summation of trains from all of 
the motor units which have fibers near the electrode. 

To study the firing patterns of the motor units, the 
pulses corresponding to each motor unit must be tracked 
throughout the contraction. However, since the detected 
pulse shapes can interfere with each other when they 
overlap in time (see Fig. 2), and since the pulse shapes can 
change shape and amplitude over time, tracking is a very 
challenging task. 

In the late 1970's and through the 1980's, the 
NeuroMuscular Research Center (NMRC) at Boston 
University [1-4] developed a system that decomposes an 
intramuscular EMG signal into the constituent motor unit 
action potential trains. The application of this "precision 
decomposition" system to experimental EMG data has led 
to significant physiological findings. However, to address 
many of the remaining physiological issues it has become 
necessary to overcome this system's limitations: 

•	 Processing is very slow. The automated 
component requires several hours of execution 
time. 



500 
Motor unit A 

500 
Motor unit B 

500 

0 0 0 

-500 -500 -500 

-1000 -1000 -1000 

A & B superimposed 

0 50 100 150 0 50 100 150 0 50 100 150
 
500 500 500 

0 0 0 

-500 -500 -500 

-1000 
0 50 100 

-1000 
150 0 50 100 

-1000 
150 

500 500 500 

0 0 0 

-500 -500 -500 

-1000 
0 50 100 

-1000 
150 0 50 100 

-1000 
150 

Fig. 2 Typical pulse shapes 

0 50 100 150 

0 50 100 150 

•	 Automated results are not accurate enough, 
requiring manual editing by a human operator. 
Manual editing takes several days to complete. 

•	 For a given experiment, the system only tracks up 
to 20 motor units. 

•	 For a given experiment, the system only handles 
signals containing at most 3000 pulses. 

•	 The system only handles data sampled at 50 kHz, 
despite the fact that the signal bandwidth is only 
20 kHz. 

•	 The system can only handle 3 channels of EMG 
data. 

•	 The system uses outdated software which only 
runs on an obsolete platform (VAXNMS). 

The system presented in this paper is an entirely new 
implementation developed to overcome the limitations of 
the previous system. Preliminary results indicate that the 
new system outperforms the original when applied to 
typical intramuscular EMG signals that are obtained 
through experiments. 

2. FRAMEWORK 

The EMG signal consists of a sum of multi-channel pulse 
trains. Our problem is to assign each pulse to its train. This 
is done by passing each multi-channel pulse through a 
maximum a posteriori (MAP) receiver to determine the 
train to which it belongs or to initiate a new train. To 
implement the receiver, we can acquire the a priori 
probability of occurrence of each train's pulse at a given 
time through the use of the hazard (or failure rate) function 
associated with the corresponding interval process. The 
prototype pulse used by the MAP receiver for any 
particular train also has to be regularly updated since 
pulse-shape characteristics are generally time-varying. 

2.1. The pulse detector 
An EMG signal is characterized by pulses of short 
duration (typically 2 ms.) separated by longer intervals 
(typically 80 ms.). Pulses may be located by examining 
regions where the energy of the signal exceeds a given 
threshold. The exact location of the pulse within an 
identified region may be determined by identifying the 
largest amplitude peak across all channels. 

The pulse detection process is more involved when 
there is a degree of overlap between pulses from different 
trains. The basic strategy from [1,2] is to first detect and 
classify the pulse with the highest amplitude peak and then 



to subtract the corresponding prototype pulse from the 
data before trying to detect any overlapping pulses. Since 
the subtraction process can introduce error energy, there is 
the potential for the system to erroneously detect this 
energy as another pulse. To avoid such errors, we have 
introduced the following innovation with respect to [1,2]: 
After subtraction of a prototype pulse, data values whose 
magnitudes are below the corresponding prototype pulse 
magnitude are ignored when attempting to detect another 
pulse. In other words, we model the subtraction process as 
introducing errors proportional to the values being 
subtracted. 

2.2. The MAP receiver 
The task of the MAP receiver is to associate a particular 
pulse train with a detected multi-channel pulse. Denoting 
the i'th pulse train by the symbol u., the MAP receiver 
selects a particular symbol, say Uk, such that: 

P(uklp»P(u,lp) l$i$M, i':i'k (1) 

where p is the vector consisting of the concatenated data 

channels of the detected pulse. In the presence of white 
Gaussian noise with variance cr, the MAP decision 
criterion may be restated as: 

2liJ -skl - 2(J'21nP(uk) < !iJ -sJ- 2(J'2 In P(uJ, 

}$i$M,i':i'k (2) 

where "ii is the vector consisting of the concatenated data 

channels of the prototype pulse for the j'th train, and 

P ( ui) is the a priori probability that the detected pulse 

belongs to the pulse train Ui. 

In the EMG application, the lengths of vector 
waveforms for each prototype pulse differ, and may vary 
over time for the same train. As a result, the MAP decision 
criterion in (2) may be modified [1,2] by normalizing the 
error signals as follows: 

Ip-s kl 2
 

Is kl 2
 

1$i$M, i r k . (3) 
An innovation with respect to [1,2] is the manner in 

which p is aligned with Si before computing their 

difference. Rather than simply basing the alignment on the 
locations of the highest peaks in each of the vectors, our 
alignment process also considers the second highest peak 

in p as well as the polarities (negative or positive) of the 

peaks whose locations are being aligned. We have found 
this change to be a major factor in the improved results 
from our system with respect to previous systems. 

2.3. The a priori probabilities 
When a pulse is detected at a particular time, we are 
interested in estimating the a priori probability that the 
pulse belongs to a particular pulse train. To accomplish 
this, we utilize the hazard function associated with each of 
the pulse trains. Experimental evidence [1,2] indicates that 
the corresponding interval processes are non-Poisson and 
thus their arrival rates are time-varying. It has been 
suggested [1,2] that the first order inter-arrival times (T) 
have a Gaussian density function and thus the hazard 
function for the i'th train may be obtained as: 

R (t) - Ir, (t) (4) 
I ­ 1- F (t)'

t; 

where IT, (t) is the density function for the inter-arrival 

time and FT, (t) is the corresponding cumulative 

distribution function. There is always the possibility that 
some of the pulses may not be detected (e.g. due to 
overlap with pulses from other trains). Such missed 
detections may be accounted for in the hazard function 
calculation by modeling the missed detections as a 
Bernoulli process with probability of miss p. This results 

in the following expression forh (t) in (4): 

(t-n It .r] 
[fr,(t) = I 1 e-~ (I_p)pn-I,(5) 

2 
n=1 ~2n n(J'i 

where Ili is the mean and cr? is the variance of the inter­
arrival time for the i'th train. 

Following [1,2], we estimate the a priori probability 
of occurrence of a pulse from the j'th train at time t as: 

1>; (t) = MRi (t) (6) 

I,.Rj(t) 
j=1 

where M is the total number of pulse trains at time t. 

2.4. Prototype pulses: initiation and updating 
The prototype pulse representing each pulse train needs to 
be initiated and regularly updated as the characteristics of 
the trains' pulse shapes evolve over time. Our basic 
strategy to initiate a prototype pulse for a new pulse train 
is as follows. When pulse train Uk is selected by the MAP 
receiver, we find the scalar A which minimizes the error 

2liJ -Ask I • We then determine the degree of shape 

mismatch as XN=lp -Askl. If lA-II and/orXN are 

unacceptably large, we initiate a track representing a new 

pulse train. When neither lA-II nor)..'N are unacceptably 



large, the detected pulse is assigned to pulse train Uk 

selected by the MAP receiver. In this instance, the 

prototype pulse Sk is updated by a weighted average of 

Sk and the corresponding portion of 75 . 

2.5. Resolution of pulse overlap 
As illustrated in Fig. 2, it is possible in some instances for 
the received data 75 to correspond to significantly 

overlapped pulses of two or more pulse trains. Such a 
situation typically gives rise to a false pulse train initiation. 
To avoid such unnecessary initiations, we may perform a 
search for combinations of prototype pulses that can 
account for the received data. This is part of our ongoing 
research. 

So far, we have found the pulse overlap resolution 
strategies in [1,2] to have unacceptably large error rates 
for the type of signal data reported in section 4. 
Furthermore, these strategies are computationally 
expensive because they search through all possible 
combinations of prototype pulses to account for the signal 
data. We have focused instead on ruling out the possibility 
of p~lse-overlap by using heuristics involving pulse 
duration and pulse energy. By minimizing the number of 
times pulse-overlap resolution is performed, our system 
gains in accuracy and speed of execution. 

3. IMPLEMENTATION 

The implementation of our system is within an object­
oriented framework, in C++. We have utilized the IPUS 
C++ Platform (ICP) [5] for flexibly coordinating the 
actions of the initial pulse-train tracking program with that 
of other programs (under current development) for 
extending/repairing/merging tracks. The initial pulse­
tracking procedure, whose prototype implementation is 
now complete, is partitioned into independent stages ­
pulse detection, pulse overlap resolution, prototype 
update, etc. Here we have employed a state machine 
architecture, with the different stages of pulse tracking 
implemented by different classes. The separate stages are 
thus decoupled and can be modified in isolation. Unlike 
typical state machine architectures, the state transitions are 
triggered by intermediate data processing results rather 
than external events. For example, the identity of the next 

state in one case depends upon whether or not a significant 
peak is detected within a signal region. 

Our system is able to handle multi-channel signal data 
with up to 9 channels and it allows the user to specify the 
sampling rate and various parameters associated with the 
MAP receiver, prototype initiation, prototype update etc. 
H also saves intermediate results (such as the evolution of 
pulse prototypes) for use in later processing. For example, 
we have developed a program to fill gaps (due to 
misclassifications) in the initial tracks by carrying out anti­
causal tracking that uses selected pulse prototypes from 
the initial run. 

4. RESULTS 

The initial implementation of our EMO decomposition 
program (NEW-DECOMP) has already out-performed the 
~est decomposition program (ORIO-DECOMP) predating 
It. To illustrate this, we display the NEW-DECOMP 
output in Fig. 3 and the ORIO-DECOMP output in Fig. 4 
when the input to each program is a three-channel 
intramuscular EMO signal, approximately 65 seconds long 
and sampled at 50KHz. Each of these figures uses dots to 
represent inter-pulse intervals (IPI's) in milliseconds for 
each detected track. Also shown is the level of force 
applied by the subject, which initially ramps up to 50% 
maximum voluntary contraction (MVC) for approximately 
one second, then decreases to 20% MVC for 
approximately 50 seconds. For comparison purposes, we 
have displayed in Fig. 5 the result of modifying the ORIO­
DECOMP output after extensive manual inspection of the 
multi-channel input data by an experienced operator. In 
essence, Fig. 5 may be viewed as representing the desired 
output for the given input signal. Even a cursory visual 
inspection indicates that the NEW-DECOMP output in 
Fig. 4 is closer to the desired output than the ORIO­
DECOMP output in Fig. 3. At a 0.6% incorrect 
classification rate, ORIO-DECOMP detects and correctly 
classifies approximately 70% of the total number of 
pulses, while NEW-DECOMP detects and correctly 
classifies approximately 90% of the total number of 
pulses. While these percentages are specific to one 
particular input signal, we have consistently obtained 
better performance from NEW-DECOMP for other input 
signals as well. 
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Fig. 3 Results from ORIG-DECOMP 
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Fig. 4 Results from NEW-DECOMP 
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5. CONCLUSION 

We have described a signal processing framework and its 
initial software implementation to overcome the 
limitations of previous systems for the decomposition of 
intramuscular EMG signals. Major signal processing 
changes already incorporated with respect to the 
previously most successful approach are in the following 
areas: (1) pulse detection, (2) alignment of data pulse and 
MAP prototype pulse, and (3) the resolution of pulse 
overlap. Although we are continuing research on 
improving various signal processing aspects, our system is 
already providing superior performance with respect to 
previous systems for real EMG signals such as the one 
considered in this paper. 
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