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Abstract- We have developed a knowledge-based system for the
improved decomposition of multi-channel EMG signals. This
system incorporates streamlined and/or modified versions of
the basic algorithms in the precision decomposition technique.
In addition, it employs the TPUS framework from artificial
intelligence to implement signal re-processing strategies for the
detection and subsequent correction of decomposition errors
arising from its initial signal processing stage. Experiments on
real EMG data indicate that our new system has significant
speed as well as accuracy advantages over previous generations
of precision decomposition programs.
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1. INTRODUCTION

Over the last two decades, the NeuroMuscular Research
Center (NMRC) at Boston University has developed and
refined a precision decomposition technique [1] as the basis
of a system (DECOMP) that decomposes 3-channel EMG
signals into their constituent trains of motor-unit action
potentials. The application of DECOMP teo experimental
EMG data has led to significant physiological findings.
However; progress has been slow because DECOMP often
takes several hours to analyze even one minute of EMG data.
Furthermore, extensive manual editing of the results is
necessary to achieve reasonable accuracy rates. In order to
overcome such limitations, we have developed and
implemented a knowledge-based framework for EMG
decomposition.

1. FRAMEWORK

A multi-channel EMG signal from an electrode inserted
into a muscle may be modeled as a sum of N quasi-periodic
pulse trains in each of the channels. Typically, N €[1,20].
The challenge of EMG signal decomposition is to determine
the firing times of individual motor-units whose pulse shapes
evolve over time (primarily due to electrode movements
during signal acquisition). A further complicating factor is
that different motor-units may have pulses with similar
shapes, making it difficult to distinguish between the motor-
units. Also, when two or more motor-untts fire at about the
same time, the measured pulse in each channel is a
superposition of the individual motor-unit pulses, making
the detection task more difficult. To address such problems,
we have undertaken a knowledge-based approach from the
field of artificial intelligence. Specifically, we are using the
IPUS framework for Integrated Processing and
Understanding of Signals, As stated in [2], the IPUS
paradigm is intended for “complex environments, which are
characterized by  variable  signal-to-noise  ratios
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unpredictable source behaviours, and the simultaneous
occurrence of objects whose signal signatures can distort
each other.” We use the IPUS framework to repair the
results from an initial round of signal processing that
includes pulse detection and classification as well as the
initiation and updating of prototype pulses corresponding 1o
the different motor-units.

A.  The pulse detector

The pulse detection process is complicated when there is
a degree of overlap between pulses from different trains. The
basic strategy from [1] is to first detect and classify the pulse
with the highest amplitude peak and then to subtract the
corresponding prototype pulse from the data before trying to
detect any overlapping pulses. Since the subtraction process
can introduce error energy, there is the potential for the
system to erroneously detect this energy as another pulse. To
avoid such errors, we have introduced the following
innovation with respect to [1]: After subtraction of a
prototype pulse, data values whose magnitudes are below the
corresponding prototype pulse magnitude are ignored when
attempting to detect another pulse. In other words, we model
the subtraction process as introducing errors proportional to
the values being subtracted.

B. The MAP receiver

The task of the MAP receiver is to associate a particular
pulse train with a detected multi-channe] pulse. Denoting the
I'th pulse train by the symbol u;, the MAP receiver selects a
particular symbol, say u;, such that:
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where g is the vector consisting of the concatenated data
channels of the detected pulse. Tn the presence of white:
Gaussian noise with variance 67, the MAP decision critericn
in (1) may be restated as:
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where §; is the vector consisting of the concatenated data
channels of the prototype pulse for the i’th train, and P(u) is
the a priori probability that the detected pulse belongs to the
pulse train u;. In the EMG application, the lengths of vector
waveforms for each prototype pulse differ, and may vary
over time for the same train. As a result, the MAP decision
criterion in (2) may be modified {1] by normalizing the error
signals as follows:
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An innovation with respect to [1] is the manner in which p is
aligned with 5 before computing their difference. Rather
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than simply basing the alignment on the locations of the
highest peaks in each of the vectors, our alignment process
also considers the second highest peak in p as well as the
polarities (negative or positive) of the peaks whose locations
are being aligned. To estimate the a priori probabilities P(u)
i (3), we assume that the first order inter-arrival times are
Gaunssian  distributed and thus the comesponding hazard
function is:
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where f7; (7} is the density function for the inter-arrival time
and Fr(r) is the corresponding cumulative distribution
function. There is always the possibility that some of the
pulses may not be detected (e.g. due to overlap with pulses
from other trains). Such missed detections may be accounted
for in the hazard function calculation by modeling the missed
detections as a Bernoulli process with probability of miss p.
This results in the following expression for f(7) in {(4):
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where p; is the mean and o7 is the variance of the inter-
arrival time for the #'th train. Following [1], we estimate the
a priori probability of occurrence of a pulse from the #’th
train from among M trains at time ¢ as:

P(u,} = R,(:)/Z R, ().

where M is the total number of pulse trains at time .
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C. Protonpe pulses: Initiation and updating

When pulse train #; is selected by the MAP receiver, we
find the scalar A which minimizes the error |Q-A§k|2. We then
determine the degree of shape mismatch as XN=|p-4s,). If 14-
lland/or XN are unacceptably large, we initiate a track
representing a new pulse train. When neither |4-1] nor XN are
unacceptably large, the detected pulse is assigned to pulse
train #; selected by the MAP receiver. In this instance, the
prototype pulse s, is updated by a weighted average of 5, and
the cormresponding portion of p.

D.  Resolution of pulse overlap

We have found the pulse overlap resolution strategies in
[1] to have unacceptably large error rates for the type of
signal data reported in section 4. Furthermore, these
strategies are computationally expensive because they search
through all possible combinations of prototype pulses to
account for the signal data. We have focused instead on
ruling out the possibility of pulse-overiap by using heuristics
involving pulse duration and pulse energy. By minimizing
the number of times pulse-overiap resolution is performed,
our systen gains in accuracy and speed of execution.
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E. IPUS-Based Repair

The results from the initial round of signal processing give
rise to decomposition errors because of missed detections
and uncertain classifications. We utilize the TPUS framework
to control a process that seeks to repair such errors by
examining the ipitial  decomposition results  for
inconsistencies with constraints that typically govern the
characteristics of EMG trains. The constraints used for this
purpose are stored in the IPUS knowledge base. Detection of
the inconsistencies leads to a hypothesize-and-test strategy
for repairing the underlying errors.

I1I. RESULTS

We display our system’s output in Fig, I where the input
is a three-channel intramnuscular EMG signal, approximately
65 seconds long and sampled at S0KHz. We use dots to
represent inter-pulse intervals in milliseconds for each
detected track. Also shown is the level of force applied by
the subject, which initially ramps up to 50% maximum
voluntary contraction (MVC) for approximately one second,
then decreases to 20% MVC for approximately 50 seconds.
At a 0.6% incorrect classification rate, our system defects
and correctly classifies approximately 90% of the total
number of pulses while DECOMP detects and correctly
classifies only 70% of the pulses. The execution time is
under a minute for the new system as opposed to several
hours for DECOMP.
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Fig. 1. Results from our system
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