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ABSTRACT 

A major task in the decomposition of multi-channel 
Electromyographic (EMG) signals into their uni-source 
pulse train (UPT) components is to resolve pulse 
superpositions. Even optimal segmental analysis that fits 
linear combinations of temporally aligned UPT pulses to 
short data segments gives rise to errors because of pulse 
evolution and the presence of non-stationary noise. To 
address such shortcomings, we use the results of segmental 
analysis to estimate the probability of occurrence of each 
UPT in every segment. These probabilities, in conjunction 
with validity constraints on UPT inter-pulse intervals, are 
then used in a utility maximization process to revise the 
initial hypotheses. Inclusion of such suprasegmental 
analysis in a second generation EMG decomposition 
system has increased the system's accuracy from under 
75% to well over 95% on real EMG data. 

1. INTRODUCTION 

The processes by which the brain causes muscles to 
produce force are not yet fully understood by researchers. 
These processes are mediated by the motor control system, 
a complex network of interconnected neurons. There are a 
large number of research areas that depend on the study of 
the motor control system, ranging from the study of 
muscular disorders and diseases such as (potentially fatal) 
spasmodic dysphonia to the effects of microgravity on the 
human body. 

Muscle fibers are stimulated by neurons whose cell 
bodies are located in the spinal cord. These muscle fibers 
together with the motor neuron are referred to as a motor 
unit. To study the firing patterns of motor units, a 
multi-channel electrode is inserted into the muscle, which 
records an intramuscular EMG signal. When the muscle 
fibers near the electrode detection surface contract, the 
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Fig. 1. EMG Measurement & Decomposition 

electrode records a pulse, widely known as a motor unit 
action potential, on each channel. 

Throughout a muscle contraction each motor unit fires 
repetitively, generating a uni-source pulse train (UPT), 
commonly referred to as a motor unit action potential train 
in the physiological literature. The recorded EMG signal is 
thus a summation of multi-channel UPT contributions 
from all of the motor units which have fibers near the 
electrode. 

To study the firing patterns of the motor units during a 
muscle contraction, it is desirable to decompose the multi­
channel EMG signal into its UPT components. However, 
since the detected pulse shapes can interfere with each 
other when they are superimposed in time, and since pulse 
shapes and amplitudes evolve over time, such 
decomposition is a very challenging task. 

A central theme in solutions to the EMG 
decomposition task is to divide the multi-channel EMG 
signal into segments that are individually constrained not 
to contain pulse repetitions from any particular UPT. This 
permits segmental analysis to be conducted for modeling 
the data in each segment as a linear combination of 
temporally aligned UPT pulses. We have extended this 
approach to include a stage of suprasegmental analysis in 
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order to counter the shortcomings (largely due to pulse 
evolution and non-stationary noise) in the results obtained 
from segmental analysis, regardless of whether segmental 
analysis is optimal or not. 

2. BACKGROUND 

The basic framework for dividing an EMG signal into a 
sequence of segments and using cross-correlation concepts 
to initiate and sustain the recognition of UPT 
contributions in those segments was originally proposed 
by LeFever and De Luca in 1982 [1] and elaborated by 
Broman [2]. This framework includes: 

(1)	 Criteria for initiating a "template" for the pulse 
shape of a UPT encountered for the first time. 

(2)	 Strategy for updating templates to account for 
pulse evolution within each UPT. 

(3)	 Criteria for comparing segment data against UPT 
templates. 

(4)	 Criteria for initiating the process of resolving 
pulse superpositions in segment data. 

(5)	 Strategy for resolving pulse superpositions within 
a segment. 

Extensions and alternatives to this framework have 
been proposed and investigated by various researchers 
over the past two decades. For example, in addressing 
pulse superpositions within a segment, LeFever and 
De Luca had utilized a sequential strategy that upon 
finding a match for a template in the segment data, 
subtracts that template's contribution in the segment 
before proceeding to find the next match in the same 
segment. While computationally efficient, their approach 
is definitely sub-optimal. In contrast, De Figueiredo and 
Gerber [3] devised a computationally expensive 
continuous-time optimization method for the simultaneous 
recognition of UPT contributions by minimizing the 
squared error over the entire duration of a segment. 
McGill [4] refined this approach by using a mixture of 
continuous-time and discrete-time optimization to reduce 
the cost of the search for the minimum error. Other 
alternatives that have been explored for resolving pulse 
superpositions within individual segments include methods 
based upon wavelet spectrum matching [5] and Neural 
Networks [6]. 

3. SUPRASEGMENTAL ANALYSIS 

The need for suprasegmental analysis arises because of the 
shortcomings of segmental analysis for resolving pulse 
superpositions in practical situations. The difficulties 
encountered there are due to significant pulse evolution 
within each UPT and the non-stationary noise from distant 
motor units. 

Let us assume that segmental analysis has already 
been carried out to identify each segment's candidate UPT 

pulses along with their respective locations and gain 
factors. Denoting the template for one of the candidate 
pulses by the vector p and the corresponding segment data 
by the vector d, we initially estimate the probability that 
the UPT pulse actually occurred in the given segment as; 

2/1 2p= ~ (~l-I e 1 d 1 ) 

where B = a if 0 =a =1, B = lIa if a > 1, and B= 0 if a 
< 0, and a is the scale factor that minimizes the value of 

lel2 
when e = (d - a p). Conceptually, a represents 

the degree to which d and p are collinear, and e represents 
the orthogonal component of the modeling error. We then 
proceed to obtain alternative probability estimates, each 
time replacing d by a modifted version to include the 
effect of subtracting one or more of the other templates 
hypothesized to be in the same segment. If there have been 
m subtractions in d, we also adjust the corresponding 

probability estimate by multiplying it with (O.5)m in order 

to account for subtraction noise. The maximum of these 
different probability estimates for the kth UPT in the nth 

segment is assigned as the final estimate ~,k and 

incorporated within a utility maximization process for 
selecting among the various UPT hypotheses in each 
segment. 

To establish the framework for utility maximization, 
we define a Boolean random variable xk,n which is equal to 
1 when the kth UPT has a pulse in the nth segment. We 
denote the set of all N data segments of the EMG signal by 

S and we define the jth valid subset S VI ofS as one whose 
segments are such that if a UPT had a pulse in each 
segment, the resulting inter-pulse intervals would not be 
less than a specified minimum. The total number of pulses 

of the kth UPT in SVI may be represented as: 

y(j) = ~ X 
k L.J k,« 

nES(j) 

The ''utility'' of S(j) as the subset that contains all pulses 
of the kth UPT is then obtained as: 

E(y(j» = ~ E(x ) = ~ P. 
k L.J k~ L.J k~ 

nES(J) nES(J) 

where each probability Plc,n may be estimated (as 
described earlier in this section) on the basis of a cross­
correlation analysis between the template for the kth UPT 
and the data for the nth segment. Finally, we search the 

subsets S VI for the one that has the maximum ''utility.'' 

Formally, we find a value jo for j in S VI such that: 



4. IMPLEMENTATION 

Over the last two decades, the NeuroMuscular Research 
Center (NMRC) at Boston University has developed and 
refined a Precision Decomposition technique as the basis 
of a system that decomposes 3-channel EMG signals into 
their constituent UPT's. The application of this system to 
experimental EMG data has led to significant 
physiological findings [7]. However, progress has been 
slow because that system often takes several hours to 
analyze even one minute of EMG data. Furthermore, 
extensive manual editing of the results is necessary to 
achieve reasonable (above 95%) accuracy rates. 

In order to overcome the speed and accuracy 
limitations of the original system, we have been 
developing [8] over the last couple of years a second­
generation EMG decompositionsystem. We have utilized 
the IPUS architecture (for Integrated Processing and 
Understanding of Signals) for flexibly coordinating the 
actions of various phases of operation of the system: 
filtering, segmentation, pulse detection, segmental 
analysis, and suprasegmental analysis. The implementation 
of our system is within an object-oriented framework in 
C++, and we have made extensive use of the IPUS c++ 
Platform (lCP) [9]. 

5. RESULTS 

With the incorporation of suprasegmental analysis, our 
new EMG decomposition system is on the average 
providing over 95% accuracy (taken as the product of 
sensitivity and specificity) in decomposing experimental 
EMG data. We present two examples to illustrate the 
accuracy improvement obtained via suprasegmental 
analysis. In each example the input is a three-channel 
intramuscular EMG signal sampled at 20KHz and 
segmental analysis is carried out using a computationally 
efficient sequential strategy adapted from LeFever and De 
Luca [1]. Replacing the sequential strategy by an optimal 
segmental analysis such as that of McGill [4] offers only 
marginal accuracy improvements since those techniques 
do not address the errors that arise due to factors such as 
pulse evolution and the presence of non-stationary noise 
from distant motor units. Since our suprasegmental 
analysis framework has been empirically observed to 
overcome these factors, we anticipate it will do the same 
in conjunctionwith optimalsegmentalanalysis. 

In the first example, the level of force applied by the 
subject initially ramps up to 50% maximum voluntary 
contraction (MVC) and stays there for approximately 20 
seconds, and then ramps down. Figures 2 and 3 illustrate 
the pulse detection times for the ten most significant 
UPT's found in the EMG data. The accuracy improves 
from 73.3% to 95.6% with respect to a decomposition 

obtained via a proven human-operator interactive 
technique [10]. 

In the second example, the level of force applied by 
the subject initially ramps up to 50% MVC for one second 
and then ramps down to 20% MVC and stays there for 50 
seconds. Figures 4 and 5 illustrate the pulse detection 
times for the 9 most significant UPT's found in the EMG 
data. The accuracy improves from 63.4% to 97.3%. The 
accuracy in the most difficult peak-force region improves 
from 39.2% to 92.7%. 
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Fig. 3. First Example - UPT detection times AFTER
 
Suprasegmental Analysis. .
 
Accuracy: 95.6%; Sensitivity: 96.0%; Specificity: 99.6%.
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Fig. 2. First Example - UPT detection times BEFORE 
Suprasegmental Analysis. 
(Solid curve shows force profile.) 
Accuracy: 73.3%; Sensitivity: 73.3%; Specificity: 99.9%. 
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Fig. 5. Second Example - UPT detection times AFIER
 
Suprasegmental Analysis.
 
Accuracy: 97.3%; Sensitivity:97.6%; Specificity: 99.7%.
 
Within the force peak we get:
 
Accuracy: 92.7%; Sensitivity: 93.3%; Specificity: 99.4%.
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Fig 4. Second Example - UPT detection times BEFORE
 
Suprasegmental Analysis.
 
Accuracy: 63.4%; Sensitivity: 63.5%; Specificity: 99.8%.
 
Within the force peak we get:
 
Accuracy: 39.2%; Sensitivity: 39.3%; Specificity: 99.6%.
 


