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Abstract 
We report automatic speech recognition accuracy for 

individual words using eleven surface electromyographic 
(sEMG) recording locations on the face and neck during three 
speaking modes: vocalized, mouthed, and mentally rehearsed.  
An HMM based recognition system was trained and tested on 
a 65 word vocabulary produced by 9 American English 
speakers in all three speaking modes.  Our results indicate 
high sEMG-based recognition accuracy for the vocalized and 
mouthed speaking modes (mean rates of 92.1% and 86.7% 
respectively), but an inability to conduct recognition on 
mentally rehearsed speech due to a lack of sufficient sEMG 
activity.  

Index Terms: sEMG, subvocal speech, speech 
recognition 

1. Introduction 
Human speech, being a natural and efficient means of 

communication, makes for an attractive modality for the 
interaction between humans and machines.  The most 
common form that this man-machine interaction is automatic 
speech recognition (ASR), in which acoustic speech is 
translated into a sequence of speech tokens, typically words, 
using pattern classification techniques.  ASR performance has 
achieved accuracies permitting commercial applications.  As 
successful as automatic speech recognition has been, it does 
have some inherent weaknesses. Specifically, ASR 
performance degrades rapidly in the presence of acoustic 
noise, rendering it unsuitable for use in acoustically harsh 
environments.   Moreover, because speech is an audible form 
of communication, maintaining privacy and security while 
using ASR is problematic.  Finally individuals who have lost 
the ability to speak normally cannot make full use of ASR 
interfaces, even if their language function is intact. 

These deficiencies motivate the need for an alternative 
form of speech recognition that does not rely on an acoustic 
speech signal. One potential alternative is to acquire speech 
information from surface electromyographic (sEMG) signals 
recorded from the muscles involved in speech production.  
Much of the speech musculature is recordable from the face 
and neck surface, providing sEMG signals applicable to ASR 
as a supplement or possibly as an alternative to the typical 
microphone input.   

Although the field of sEMG-based speech recognition is 
relatively new, and is far from achieving the acoustic-based 

equivalent,, there have been some promising initial results.   
Chan et al. [1] obtained a 93% recognition rate on a 
vocabulary of 10 digits (zero through nine) using 5 sEMG 
channels on the face and neck for two subjects who produced 
vocalized (normally spoken) speech.  Betts and Jorgensen [2] 
conducted a similar study on a single speaker but were able to 
achieve only a 74% recognition rate, albeit on a larger 
vocabulary of 15 words of voiced speech.  Jou et al. [3] 
further extended the vocabulary size to 108 words but at the 
cost of reduced recognition accuracy (68%).  Most recently, 
Lee [4] was able to achieve a mean 87% recognition rate on 
60 vocalized words for 8 male, Korean speakers.   

Because sEMG-based speech recognition does not rely on 
acoustic excitation of the vocal tract it is readily applicable to 
recognizing mouthed speech (in which the articulators go 
through normal production motions except no sound is 
produced).  Using 3 sEMG electrodes, Manabe & Zhang [5] 
were able to recognize 10 Japanese digits for 10 speakers with 
an average recognition rate of 64%.   Similarly, Maier-Hein et
al. [6] used a Hidden Markov Model (HMM) based scheme to 
achieve a mean recognition rate of 97% for a set of 10 digits 
recorded from 3 talkers under mouthed speech conditions.  

Further reducing the amount of overt speech activity, 
Jorgensen and Binstead [7] claimed to have developed a 
means of recognizing sEMG signals measured from the neck 
surface collected while subjects mentally rehearsed speech 
(i.e. mentally visualized speaking) They reported a mean 
accuracy rate of 72% on a 15 word vocabulary recorded from 
5 individual speakers. 

The ability to recognize silent (i.e. subvocal) speech could 
revolutionize aspects of human-computer interfaces, 
telecommunication, and assistive devices for the verbally 
impaired.  We have extended the efforts of previous sEMG-
based subvocal ASR studies, using a larger compliment of 
sEMG sensors across the face and neck, and applying both 
speech-based and sEMG-based signal processing techniques 
to improve isolated word recognition across all three speech 
modes; vocalized, mouthed, and mentally rehearsed. 

2. Methods 

2.1. Data Collection 

2.1.1. Subjects 

Data were collected from 9 subjects (4 females, 5 males), 
ranging in age from 20-42 years (mean = 27.5).  All subjects 
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were native American English speakers and had no history of 
speech or hearing disabilities.  We intentionally recruited 
athletic individuals with relatively slender necks to facilitate 
robust sEMG signal detection, with subjects having an 
average body mass index of 22.5 (±2.2). 

2.1.2. Apparatus and Sensor Locations 

Eleven sEMG sensors (parallel bar configuration, DE2.1, 
Delsys Inc., Boston MA) were positioned on particular neck 
and face locations predetermined in pilot experiments (N=3) 
to provide optimal speech-related information across 6 
anatomical regions (supralabial, labial, sublabial, submental 
neck, midline neck, and lateral neck; see Figure 1). 

Sensor placement sites were cleaned and exfoliated using 
alcohol pads followed by repeated adhesive tape application 
and removal.  The neck and face midline were marked with 
medical adhesive tape strips or a felt-tip pen, as was a line 
dividing the ventral neck from the submental (under chin) 
surface.  A flexible ruler was used to mark 1 and 4 cm 
distances from the neck midline along the submental line on 
the left side of the neck for placement of sensors #1 and #2, 
respectively.  The experimenter then palpated the larynx to 
find and mark the cricothyroid membrane (confirmed by 
vocal pitch modulation) for placement of sensor #5 just lateral 
to the neck midline, and sensor #3 was positioned lateral to 
#5, rotated 30º, with the upper casing at the submental line.  
Sensor #6 was centered on the lower 1/3 point of the 
sternocleidomastoid, and sensors #4 and #7 were positioned 
as high and low (respectively) along the ventral neck midline 
as possible while maintaining flat skin contact. 

Our pilot study results indicated that speech-related 
information from face sEMG sensors were highly dependent 
on sensor position, so we used sensor templates cut from 
transparency film to guide precise and consistent sensor 
positioning among subjects in the present study.   

The templates for sensor positions 8-11 provided external 
reference points to match with anatomical features of the face 
Specifically, templates #8, 9 and 11 had extensions that were 
to be placed at the corners of the mouth.  Template #10 had 
extensions that provided both the distance and position 
relative to the corner of the mouth (left face) and corner of the 
eye.  Generic templates without particular external reference 
marks were used to draw outlines for sensor positions 5 and 6. 

An elastic inductance plethysmography band (DS-X11A, 
Delsys Inc.) was worn around the chest to monitor breathing, 
and a headset microphone (WH30, Shure Inc., Niles, IL) was 
positioned approximately 5 cm in front of and slightly lateral 
to the mouth (see Fig. 1A) to record speech.  EMG signals 

were band-pass filtered 20-450 Hz, the microphone was low-
pass filtered at 10 kHz, and all signals were digitized at 20 
kHz using a 32 channel A/D converter (NI-6259, National 
Instruments Co., Austin, TX) and EMGWorks data 
acquisition software (Delsys Inc.).  

2.1.3. Experimental Tasks and Procedure 

Subjects produced a set of 65 individual words three times 
each under three speaking modes: 1) vocalized – using 
normal speech production, 2) mouthed – with articulation but 
no vocal tract excitation (no voice), and 3) mentally rehearsed 
– with mental visualization of speaking aloud, but without 
articulator movement or voice production.  Each subject 
generated a total of 6 tokens per word in the vocalized and 
mouthed speaking modes and 3 tokens per word in the 
mentally rehearsed speaking mode.  The presentation order 
for individual words was randomized for each subject, and 
this order was maintained for each voicing condition within a 
subject.  The word set included numbers 0-10, and various 
nouns and verbs that are commonly used for person-to-person 
communication and computer/device control (e.g. common 
replies, commands, locations, distances, times, etc.).  

Synchronization between word production and sEMG 
signal analysis windowing was accomplished using a 
Microsoft PowerPoint presentation to prompt each word 
repetition, and a photo-diode mounted on the computer screen 
which sensed the word prompts, activated the data acquisition 
system, and provided a recordable signal representing the 
timing of repeated words. This was particularly important for 
knowing when the mouthed and mentally rehearsed 
utterances occurred given their lack of an audible signal.  An 
audio file automatically played at the start of each new task 
word to provide the correct pronunciation.  Task words were 
presented on slides with a series of count-down symbols (see 
Figure 2).  A black outline moved across the successive 
count-down symbols from left to right in 1s intervals, 
ultimately surrounding the task word.  Subjects easily learned 
the cadence of the countdown, and consistently produced the 
task word when the black box reached the word. 

2.2. Data analysis 

2.2.1. Feature investigation 

Our investigation of a set of potential features revealed 
that the combination of Mel-frequency cepstral coefficients 
(MFCCs), which have been used successfully in this type of 
application, [1], [4], and muscle co-activation levels produced 

Figure 2. The monitor prompts a subject to say the word
“forward” when the black box, moving from left to right in 1
second steps, reaches the target (see upper insert).

Figure 1. The 11 sEMG sensor locations are shown before 
(A) and after (B) removal.  Black pen lines in B show 
electrode contacts and the red dot (neck midline) marks the 
cricothyroid gap.
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the best recognition performance. We parameterized each 
sEMG channel using 6 MFCCs, their corresponding delta 
coefficients and the 0th coefficient for each of the eleven 
sEMG channels.  The MFCCs were augmented by the co-
activation levels between pairs of EMG channels, which 
quantify the amount of simultaneous firing activity between 
all possible pairs of EMG channels.  The co-activations levels 
were originally developed for use in the recognition of 
different gross motor movements based on sEMG signals [9].  
The feature vectors were computed every 25 ms over a 50 ms 
window over all 11 sEMG channels.  

2.2.2. sEMG segmentation 

For sEMG signals collected under the vocalized speaking 
condition, segmentation can be accomplished by using the 
acoustic channel as a guide.  However, for the silent speaking 
modes, this option is not available.  As such, an sEMG based 
detection algorithm was developed that was able to 1) detect 
the onset and offset of speech related sEMG activity within a 
given channel and 2) determine when to mark the beginning 
and end of sEMG speech tokens based on activity detected on 
multiple channels.   

The detection algorithm operates on a smoothed version 
of the sEMG envelope which is computed from the raw 
envelope by taking its mean over a 40ms window every 20 
ms.  The point at which the absolute value of the derivative of 
the smoothed envelope first exceeded a specified threshold 
was marked as the onset sEMG activity. Similarly, the last 
point was marked as the end of sEMG activity.  The threshold 
was set to an empirically determined value and an adaptation 
measure implemented such that if the threshold level was 
never exceeded, the threshold was decreased by a small 
amount until an onset and an offset were detected.  This 
adaptation feature ensured that all data were labeled.   

Based on our investigation into sEMG channel latencies 
during speech activity, it was determined that channels 1, 5, 
8, 9 and 11 were most likely to trigger first.  As such, the 
detection algorithm was applied to these five channels, and 
the earliest onset and latest offset markers across all channels 
were chosen as the beginning and end of the speech sample, 
respectively. 

2.3. Recognition Details 
Standard Hidden Markov Models (HMMs) [11] were created 
for each of the 65 isolated words utilizing the HMM Toolkit 
(HTK) Version 3.4 [10].  Left-to-right word models [11] with 
eight emitting states were used, including the possibility to 
remain in the current state or to move forward one state in the 
state sequence represented in the model.  The output 
probabilities for each of the states were relatively simply 
represented as a single Gaussian and a variance for each 
parameter (each parameter in each sEMG channel was treated 
as statistically independent in the model). 

Training was performed in a speaker-dependent (training 
and test data were taken from the same speaker) and a speech 
modality-dependent manner (separate models were trained for 
vocalized, mouthed, and mentally rehearsed data).  Of the six 
instances of each of the 65 isolated words in the data corpus 
(three for mental rehearsal), four were used for training and 
the remaining two for testing (two and one for mental 
rehearsal).  Initial parameter estimates of the model 
parameters were generated using an assumption of equal 
distribution of data frames to HMM states (i.e. 1/8 of the 
samples assigned to each model state). The Baum-Welch 

algorithm was used to retrain the initialized model until 
convergence was achieved. 

To perform recognition, the Viterbi algorithm was run to 
determine which of the word models had the highest 
maximum probability state sequence of producing the test 
word.  The word model with the highest score was taken as 
the recognized word. 

3. Results 

3.1. Vocalized and Mouthed Speech 
Although the entire 65 word isolated word vocabulary was 
collected together, we report separate digit recognition results 
in addition to the full vocabulary results to allow for an easier 
comparison with previous studies.  Table 1 contains the 
results for both vocalized and mouthed speech recognition for 
all 9 subjects.   

Recognition of vocalized speech was highly accurate, 
reaching a mean 98.3% recognition rate for the 10 digits and 
a corresponding recognition rate of 92.1% for the entire 
isolated word set.  In the case of the digits-only recognition, a 
total of two errors were made across all 9 subjects.    

While diminished when compared to that of the vocalized 
data, recognition performance on the mouthed data was still 
quite high.  For the digit vocabulary, the subvocal recognition 
system attained a mean recognition accuracy of 96.7% and 
for the entire isolated word vocabulary it obtained a mean 
recognition rate of 86.7%.   Most of the reduction in 
comparative performance on mouthed data can be attributed 
to recognition of Subject 9’s speech for whom the accuracy 
rate differed by 20% between the two speaking conditions.   

Table 1. Summary of recognition results for both 
vocalized and mouthed speech. 

Vocalized Speech Mouthed Speech 

Subject 
Digits 

0-9  
Full 

Vocabulary 
Digits 

0-9
Full 

Vocabulary 
1 100.0% 88.5% 100.0% 88.5% 
2 95.0% 93.1% 100.0% 84.6% 

3 95.0% 90.0% 95.0% 89.2% 

4 100.0% 91.5% 90.0% 82.3% 
5 100.0% 96.2% 95.0% 92.3% 
6 100.0% 96.9% 100.0% 92.3% 

7 95.0% 96.9% 100.0% 89.2% 
8 100.0% 84.6% 100.0% 90.8% 
9 100.0% 90.8% 90.0% 70.8% 

Mean 98.3% 92.1% 96.7% 86.7% 

3.2. Mentally Rehearsed Speech 
Recognition of mentally rehearsed speech was not possible 
due to a consistent lack of sEMG signals associated with 
“speech” production in this mode. 

A typical example of sEMG activity in all channels can be 
seen in Figure 3 which shows the signals collected while 
Subject 1 mouthed and mentally rehearsed the word,   
“affirmative,” The mentally rehearsed sEMG signals are flat 
throughout the experimental task while the mouthed data 
channels show clear signs of muscle activity.  The lack of 
discernable sEMG activity during mentally rehearsed speech 
reduced the sEMG-based speech recognition performance in 
that modality no better than random. 
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Figure 3. Signals collected during t production of the word 
“affirmative” using the mouthed (left) and mentally rehearsed 
(right) speech modes (twice per mode). The top three 
channels show the signals measured by the rib cage monitor, 
microphone, and event prompt trigger, respectively. The 11 
sEMG locations are shown in Figure 1. Note the lack of audio 
signal for these subvocal productions, and the absence of 
useful sEMG activity during mental rehearsal. (The sEMG 
signals are all plotted on the same scale.)  

4. Discussion 
This study represents a comprehensive effort to explore the 
feasibility of isolated-word subvocal speech recognition using 
sEMG signals recorded on the face and neck across three 
modes of speech production (voiced, mouthed, and mentally 
rehearsed).  Our results indicate that while highly effective 
recognition is possible for voiced and mouthed speech, it is 
not feasible for mentally rehearsed speech. 

At this stage, our ability to recognize voiced and mouthed 
speech is limited to the speaker-dependent case: the 
recognizer must be trained and tested on the same speaker 
(but not the same utterances).   While this situation would 
appear to be a limitation, there are useful applications for a 
speaker-dependent version.   Should the system be used to 
recognize the speech of a disabled user, it would be necessary 
to train the system on that user to capture his/her specific 
articulation pattern.  A speaker-dependent system is further 
justified by the fact that our recognition results were obtained 
using a minimal amount of training data; our training 
procedure used 4 tokens/ word. Requiring a new user to 
repeat only 4 times to achieve close to 90% recognition rates 
does not seem an undue burden.  Further, as additional data 
are made available and as we explore recognition of 
phoneme-level speech tokens, the move to speaker-
independent training can be explored further.   

Our exploration of mentally rehearsed speech recognition 
has found that, contrary to previous findings [7], this mode of 
speech does not produce any recognizable signals.  One could 
attribute this to a lack of intent on the part of the subjects.  
However, an inspection of the subjects’ respiratory activity, 
as measured by the plethysmography band revealed that the 
respiration patterns during the mentally rehearsed tasks were 
similar to those found during the mouthed and vocalized 

tasks, suggesting that the subjects were indeed concentrating 
on the mental rehearsal task. 

Another, more likely reason for this discrepancy could be 
the amount of training the subjects received prior to the 
recording of the sEMG signals.   Previous studies [7] are 
unclear on the amount of training that subjects received, and 
how much feedback was provided on the quality of the 
signals they were producing was provided.  If feedback was 
provided, those subjects could have learned surrogate non-
speech behaviors that were mapped by the system into the 
recognition vocabulary.  

5. Conclusions 
This study has explored the possibility of performing isolated 
word recognition based on sEMG signals collected from the 
face and neck during (1) vocalized speech, (2) mouthed 
speech, and (3) mentally rehearsed speech.  The resulting 
recognition performance is quite robust for a 65 word 
vocabulary in both the voiced and mouthed speech modes, 
producing 92.1% and 86.7% mean recognition rates (on 9 
speakers), respectively.   These recognition rates exceed those 
reported in the previous literature.  Recognition of mentally 
rehearsed speech was not possible because the mental 
rehearsal tasks produced little to no usable signals.   

6. Acknowledgements 
This study was funded by the United States Defense 

Advanced Research Projects Agency under contract 
W15P7T-06-C-P437.  

7. References 
[1] Chan, A. D. C., Englehart, K., Hudgins, B, and Lovely, D.F. 

"Myoelectric Signals to Augment Speech Recognition," Medical 
and Biological Engineering & Computing vol. 39, pp. 500-506, 
2001.

[2] Betts, B., J and Jorgensen C.  "Small Vocabulary Recognition 
Using Surface Electromyography in an Acoustically Harsh 
Environment." NASA TM-2005-21347, 2005. 

[3] Jou, S.C., Maier-Hein, L.,Schultz, T. and Waibel, A. 
“Articulatory feature classification using surface 
electromyography,” in Proc. ICASSP 2006, pp 606-608. 

[4] Lee, K-S. “EMG-Based Speech Recognition Using Hidden 
Markov Models With Global Control Variables.” IEEE Trans. 
On Biomed. Eng., vol 55, pp. 930-940, 2008. 

[5] Manabe, H. and Zhang, Z. "Multi-stream HMM for EMG-based 
speech recognition."  Proc. Of 26th Annual International 
Conference of the Engineering in Medicine and Biology Society, 
2004. EMBC 2004. vol. 2, pp. 4389-4392, 2004. 

[6] Maier-Hein, L., Metze, F., Schultz, T., and Waibel, A. “Session 
Independent Non-Audible Speech Recognition Using Surface 
Electromyography.”  IEEE Automatic Speech Recognition and 
Understanding Workshop. p.  331-336, 2005 

[7] Jorgensen, C. and Binstead, K.  “Web Browser Control Using 
EMG Based Sub Vocal Speech Recognition.” Proc. Int.  Conf. 
on System Sciences 2005. pp. 294c-294c, 2005. 

[8] De Luca, C.J. “Surface Electromyography: Detection and 
Recording” www.Delsys.com, 2002. 

[9] Cheng, M.S. “Monitoring Functional Activities in Patients With 
Stroke.”  Sc.D. Dissertation. Boston University, Department of 
Biomedical Engineering, 2005. 

[10] HTK Speech Recognition Toolkit, 2007, 
http://htk.eng.cam.ac.uk/ 

[11] Rabiner, L. and Juang, B.H. Fundamentals of Speech 
Recognition. Prentice-Hall, Englewood Cliffs, NJ, 1993. 

2670


